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Abstract—The occurrence of malignant melanoma had enor-
mously increased since past decades. For accurate detection and
classification, not only discriminative features are required but a
properly designed model to combine these features effectively is
also needed. In this study, the multi-tree representation of genetic
programming (GP) has been utilised to effectively combine
different types of features and evolve a classification model for the
task of melanoma detection. Local binary patterns have been used
to extract pixel-level informative features. For incorporating the
properties of ABCD (asymmetrical property, border shape, color
variation and geometrical characteristics) rule of dermoscopy,
various features have been used to include local and global
information of the skin lesions. To meet the requirements of the
proposed multi-tree GP representation, genetic operators such
as crossover and mutation are designed accordingly. Moreover,
a new weighted fitness function is designed to evolve better GP
individuals having multiple trees influencing each other’s perfor-
mance during the evolution, in order to get overall performance
gains. The performance of the new method is checked on two
benchmark skin image datasets, and compared with six widely
used classification algorithms and the single tree GP method. The
experimental results have shown that the proposed method has
significantly outperformed all these classification methods.

I. INTRODUCTION

Malignant melanoma is one of the deadliest form of skin
cancers. Fortunately, malignant melanoma can be treated suc-
cessfully if diagnosed at an early stage [1]. The continuous
increase in incidence of melanoma in recent years, its painful
biopsy procedures, high mortality rate, and their huge medical
cost have made its early diagnosis an important priority of
public health. Since this type of cancer is visible on the skin,
it can be monitored easily. In recent years, there has been
rising interest in developing computer aided diagnostic (CAD)
systems for automated detection and diagnosis of skin cancer,
specifically malignant melanoma [2]–[9].

Dermoscopy is a non-invasive diagnostic technique which
includes using an optical instrument having powerful lighting
system to examine skin lesions in a higher magnification
[10]. The dermoscopic images are rich enough for extracting
useful information. This has attracted many researchers in the
field of computer vision and pattern recognition to develop
CAD systems that can assist dermatologist in early detection.
Dermatologists use the ABCD (asymmetry, border irregularity,
color variation and dermoscopic structure) rule of dermoscopy
which is a scoring method to quantify these four lesion
properties and effectively separate melanoma from benign
lesions [11]. Automated melanoma recognition from images

is a very challenging task due to 1) the low contrast of skin
lesions, 2) the presence of many artifacts in the image, 3)
the huge intra-class variation of melanomas, and 4) the high
degree of inter-class visual similarity between melanoma and
non-melanoma skin lesions [3].

Image data often requires to be transformed into a form
that can be given directly to a classification algorithm for the
task of image classification. An image descriptor is a method
that transforms an image into useful information, which we
call features. There are many different methods for extracting
various types of features, each of which is often suitable
for different domains. However, it is often challenging to
know which type of features are good for a particular image
classification task, due mainly to the complexity of the images
themselves and the lack of domain knowledge. Meanwhile,
features are often not equally important for classification,
and irrelevant or redundant features may even reduce the
classification performance due to the large search space and
interactions between features. Feature selection which aims to
select a subset of informative and complementary features is
often necessary. Developing new features from the existing set
of features is called feature construction.

Genetic Programming (GP), which is an evolutionary al-
gorithm, has been extensively used for feature selection and
feature construction [10] and recently used to automatically
evolve image descriptors [12]. GP searches for solutions to a
user-defined problem by evolving a computer program, often
in a tree-like structure where terminal nodes consist of features
and internal nodes consist of functions [13]. GP applies genetic
operators like crossover, mutation and reproduction during its
evolutionary process to evolve diverse solutions. The main
aim of feature selection and construction is to improve the
classification performance by reducing the search space for
evolving better solutions (GP individuals) meanwhile speeding
up the search process by using a smaller number of features.

Different from single-tree GP which evolves one tree in
an individual, GP can have more than one trees to solve a
particular problem, which is termed as multi-tree GP (MTGP)
[14]. MTGP has been used for self-assembling swarm robots
[15], multi-class classification [16], and automatically evolving
image descriptors [17]. For melanoma detection, it is important
to have enough informative features in the terminal set to get
good GP individuals having better discriminative ability be-
tween classes. Hence, different kinds of features which include



color, texture, border shape and geometrical characteristic
properties are required. To achieve good performance, images
captured from different instruments might have different visual
properties such as scale, illumination, and reflection. Hence,
it is hard to decide beforehand which type of features are
suitable for which type of images (captured from different
instruments). However, different kinds of features can be
used to have enough informative features that can be used
for feature selection and construction to design a powerful
and robust GP model, which can perform well for images
taken from different acquisition devices (such as specialized
instruments and standard camera). Images captured from dif-
ferent instruments might have different visual properties such
as scale, illumination, and reflection, hence, we donot know
beforehand which type of features are suitable for which type
of images (captured from different instruments). Therefore, a
multi-tree GP approach having multiple trees, each evolved
using a different type of informative features, seems to be a
promising approach.

A. Objectives

The overall aim of this study is to develop a multi-tree
GP representation based method for the task of melanoma
classification from skin cancer images, by using different types
of features as the terminal sets. Different from most existing
approaches, this work focuses on evolving a GP individual
where different color, texture, border and geometrical shape
features are used in a suitable way to achieve performance
gains. A new fitness function is proposed which allows mul-
tiple trees (each evolved with one type of features) among
a GP individual to influence each other’s behavior rather
than evolving without any interaction (as the case in [7]),
hence evolving better classification models. This study aims
at finding answers to the following research questions:

• Whether the new weighted fitness function provides better
performance as compared to the existing fitness function
and why?

• How well is the multi-tree GP approach as compared to
single-tree GP approach across different datasets?

• Whether the proposed GP method can outperform the
other non-GP classification algorithms?

• Having images captured from different acquisition de-
vices, which type(s) of features are most prominent in
providing better discriminating ability between benign
and malignant images?

II. BACKGROUND

A. Related Work

Earlier in 1994, Ercal et al. [1] designed a neural network
approach to the automated detection of melanoma from three
benign categories of tumors. Their approach used features,
based on lesion shape and relative lesion color. These features
were supplied to an artificial neural network (ANN) for
classification of skin cancer images as malignant or benign.
This approach obtained 80% accuracy of the malignant and
benign tumors on real skin tumor images. However, the

boundaries of a lesion are required to be identified manually
by a dermatologist, which makes this system expensive to
implement.

Garnavi et al. [8] presented a novel CAD system for
melanoma classification. The work aims at the selecting an
optimal set of features and integrating these features, which
are derived from textural, border-based, and geometrical prop-
erties of the lesion. The texture features are extracted using
wavelet-decomposition, the border features are extracted by
constructing a boundary-series model of the lesion border
while analyzing it in spatial and frequency domains, and the
geometry features are extracted from lesion shape indexes. The
gain-ratio method is used for feature selection. Four machine
learning classification algorithms (support vector machine
(SVM), random forest, naı̈ve bayes, and hidden logistic model
tree) are used to classify melanoma and benign images. This
diagnostic system achieved an accuracy of 91.26%, with only
23 features. This approach described the advantage gained
in manually combining texture with border and geometry
features, compared to using only texture features. Furthermore,
in the optimized feature set, texture feature have the highest
contribution among the three types of feature sets. Though this
diagnostic system achieved good classification performance,
but the method lack a suitable way of combining different
types of features.

In [11], automatic scoring of the ABCD rule for dermoscopy
lesions is implemented. The images are first pre-processed to
remove hair artefacts using Gabor filters and boundaries are
detected using active contours. Then features are extracted
for the characteristics of ABCD rule by using existing and
newly designed methods. To classify a lesion as melanoma or
benign, the total dermoscopy score (TDS) is calculated. The
experimental results have shown good performance in terms of
sensitivity and specificity. Moreover, the results demonstrate
that the extracted features can be used to build a good classifier
for melanoma detection.

Recently, Adjed et al. [2] introduced fusion of texture and
structural features for classifying malignant melanoma. The
textural features are extracted from different variants of local
binary pattern operators, whereas the structural features are
extracted from wavelet and curvelet transforms. The method
used SVM as the classifier and showed encouraging perfor-
mance with sensitivity of 78.93%, specificity of 93.25% and
accuracy of 86.07%.

Shimizu et al. [5] extracted 828 features grouped into three
categories: color, texture, and sub-region. Two classification
models are designed: a layered based on a task decomposition
strategy, and flat models. The method is developed to classify
964 dermoscopy images belonging to four skin cancer classes.
The layered model outperformed the flat models, achieving
detection rate of 90.48%, for melanoma.

Xie et al. [4] developed an ANN based ensemble model for
classifying melanocytic tumors as benign or malignant. The
algorithm has three stages; 1) lesions are extracted with the
help of a self-generating neural network (SGNN); 2) color,
texture and border features are extracted from the lesion area;



and 3) lesions are classified using a classifier based on a
neural network ensemble model. The results have shown that
the new border features and the proposed classifier model has
significantly improved the classification accuracy.

Yu et al. [3] proposed a two-stage deep convolutional neural
network (CNN) architecture for melanoma recognition. The
authors constructed a fully convolutional residual network for
lesion segmentation and integrated it with a very deep residual
network for classification. This study produced good results
and demonstrated that very deep CNNs can be employed to
solve complicated medical image analysis tasks, even with
limited training data.

The existing methods [1], [3], [4] have used CNNs for
skin cancer image classification. Although these methods have
shown good classification performance, they are implemented
as a black-box, hence, are not interpretable. Such classifica-
tion models cannot clearly suggest which features are more
prominent in classifying skin cancer images. Furthermore, the
performance of a CNN is usually constrained by data and
requires sufficient training examples to provide good classi-
fication performance. Training a model using a large dataset
needs long time and requires large computing resources. Some
existing approaches [2], [4], [5], [8], [18] extracted various
kinds of features from skin cancer images and compared the
performance of these features for image classification using
commonly used machine learning classification algorithms.
However, they remain unable to design an effective way
of combining different types of features, and necessary to
improve performance gain.

B. Feature Extraction

1) Local Binary Patterns Features: Ojala et al. [19] de-
veloped an image descriptor termed as local binary patterns
(LBP). It is an image descriptor that has been used commonly
in a wide range of computer vision applications for the task
of feature extraction. LBP works by scanning the image pixel-
by-pixel using a sliding window of fixed radius.The value
of the central pixel is computed based on the values of the
neighboring pixels lying on the radius as depicted in Fig. 1.
It then generates a histogram (i.e. feature vector) from these
computed values. The LBP operator is defined as:

LBPp,r =

p−1∑
i=0

z(ai − ac)2i (1)

where p is the number of neighboring pixels, r is the radius,
ai and ac are the intensity values of the ith neighbor and
central pixel, respectively. Here, z(x) returns 1 if x ≥ 0, else
it returns 0. The value computed from Equation (1) is assigned
to the central pixel and the corresponding bin in the histogram
is incremented by 1. The value of kth bin of a histogram H
computed on an image of size w × h is given as:

H (k) =

w−1∑
i=0

h−1∑
j=0

(LBPp,r (Vi,j) = k) (2)

where the value of k ranges between 0 and K − 1, K being
the maximum number of bins in the histogram, and Vi,j is the
value of the pixel at the coordinate (i, j). The LBP codes are
divided into two categories: uniform and non-uniform. A code
is said to be uniform if it does not have more than two bitwise
transitions circularly from 0 to 1 or 1 to 0. For example,
the codes 0011110, 01111000, and 10000001 are uniform,
whereas the codes 00101011, 11010110, and 01010001 are
non-uniform. The size of feature vector can be reduced from
2p bins to p (p− 1) + 3 bins by combining all non-uniform
codes into a single bin. Uniform codes detect various texture
primitives such as corners, edges, line ends, flat regions and
dark spots [19]. In a skin cancer image, uniform codes can help
in detection of streaks, blobs and pigmented network, hence
extracting highly informative features, resulting in improved
classification performance.

In our experiments, we generate a histogram of uniform
codes; hence, there are 59 (= 8× (7) + 3) LBP features for a
single image.

2) Color contrast features: Color is a significant compo-
nent of the ABCD rule [20], often used by dermatologists to
classify skin lesions. Most CAD systems have incorporated
color features to enhance their classification performance [1],
[2], [4], [5], [8], [21]. Melanoma lesions are categorized by
variation in color across the lesion area. This color variation
leads to high variance in the red, green, blue (RGB) color
space. Hence, highly discriminative features can be extracted
from RGB color channels. In this work, the pixels in the
segmented skin lesion of red, green and blue color channels
are used to extract color contrast features. These features
are adopted from [18]. The mean (µ) and variance (σ) of
each channel is computed and denoted as µR, µG, µB and
σR, σG, σB. Features based on complex non-uniform color
distributions within the skin lesion region are extracted by
computing mean ratios of the mean values, such asµR

µG
, µR

µB
,

µG

µB
. Variations among the color of the skin lesion and the

surrounding skin is also computed; µR

µR
, µG

µG
, µB

µB
, where µ

represents the mean value of surrounding skin area. These 12
features are denoted as Lesioncolor features.

3) Geometrical shape features: Border irregularity and
geometrical characteristics of the shape of a lesion provide
significant diagnostic information for detecting melanoma.
Asymmetry is given the highest score among the four charac-
teristics; asymmetry, border irregularity, color, and diameter
of the ABCD rule of dermoscopy [20]. In this work, we
have used standard geometry features (area, perimeter, greatest
diameter, circularity index, irregularity index A, irregularity
index B, and asymmetry index) adopted from [22] and some
other shape features (shortest diameter, irregularity index C,
irregularity index D, and major and minor asymmetry indices)
adopted from [8]. In this study, images within each dataset
have fairly similar spatial resolution; hence, there has been no
scale issues for area and perimeter features. Here, we have
a set of 11 geometrical shape features from each skin lesion
image denoted by Lesionshape features.



Fig. 1. Step-by-Step procedure to generate LBP8,1 code for image cut-out (having 8 neighboring pixels and radius = 1) and get a decimal value of the
central pixel.

Fig. 2. The overview of the proposed method.

TABLE I
NUMBER OF EACH TYPE OF FEATURES.

Type of feature No. of features Type of feature No. of features

Lesioncolor 12 LBPRGB 177
Lesionshape 11 LBPgray 59

III. THE MULTI-TREE GENETIC PROGRAMMING METHOD

This section describes the proposed MTGP method in
detail. An individual in this MTGP approach consists of four
trees. Each tree is constructed and evolved using one type of
features. The four sets of features are Lesioncolor, Lesionshape,
LBPgray and LBPRGB as illustrated in Section II-B. Fig. 2
depicts the structure of the proposed method. An example of
evolved model having four trees is later presented in Fig. 5.
This section also describes the terminal set, the function set,
crossover and mutation operators, and the new fitness function
in the new method.

A. Terminal Set
The terminal set consists of four sets of features, extracted

from four different feature extraction methods as discussed in
Section II-B. These features and the number of each type of
features are summarised in Table I.

To extract LBPRGB and LBPgray features, LBP is used
with a window size of 3 × 3 pixels and a radius of 1 pixel
(LBP8,1). LBPgray features are extracted from gray-scale
skin cancer images, whereas LBPRGB features are extracted
from the three color channels (red, green, blue) which are
then concatenated to get a single feature vector. The value
of the ith feature for the Lesioncolor, Lesionshape, LBPgray

and LBPRGB features is indicated as Ci, Si, Ri, and Gi,
respectively (an example is shown later in Fig. 5).

Fig. 3. The proposed same-index-crossover operator.

B. Function Set

The function set consists of seven most commonly used op-
erators; four arithmetic operators {+,−,×, /}, one conditional
operator {if }, and two trigonometric {sin, cos} operators.
Among the arithmetic operators, the first three operators have
the normal arithmetic meaning, whereas division is protected
which returns 0 when divided by 0. The if operator takes four
inputs and returns the third input if the second input is smaller
than the first input; otherwise, it returns the fourth input.

C. Crossover and Mutation

In order to retain only one type of features in one tree
of a GP individual, we have designed the genetic opera-
tors, such as crossover and mutation, accordingly, which is
termed as same-index-crossover/mutation. This is illustrated
by Fig. 3. The tree evolved from Lesioncolor features in
Parent 1 can only crossover/mutate with the tree evolved
from the same Lesioncolor features in Parent 2, and it cannot
crossover/mutate with any of the other three trees evolved
from Lesionshape, LBPgray or LBPRGB features. Hence, this
type of crossover/mutation ensures that at the end of the
evolutionary process, the evolved GP individual consists of
four trees, each evolved using a single type of features to
avoid different types of features with similar ability causing
confusion to the GP system.

D. Fitness Function

For evaluating each individual in the proposed multi-tree
GP approach, we proposed a weighted fitness function, where



the weights are assigned based on the classification accuracy
of each tree in one GP individual. The fitness is defined as

fitness =

n∑
i=1

(Wi × accuracy(ti)) (3)

Wi =
accuracy(ti)∑n
i=1 accuracy(ti)

(4)

accuracy(ti) =
1

2

(
TPi

TPi + FNi
+

TNi

TNi + FPi

)
(5)

here n is the number of trees and ti is the ith tree in a
GP individual, Wi is the weight assigned to the ith tree,
and accuracy (·) is the balanced accuracy among the two
classes given by Equation (5). TP , TN , FP , and FN refers to
true positive, true negative, false positive, and false negative,
respectively. Each tree in an individual also works as a simple
classifier that can classify binary problem: if an instance x has
a negative value on the constructed high-level feature, GP will
classify x to “benign” class; otherwise to “malignant” class.

Equation (5) is more appropriate to use balanced accuracy
than standard overall accuracy since it can cope well with the
class imbalance problem. Using Equation (3) as the fitness
function, we allow all the trees to be able to evolve during
the evolutionary process and the tree having higher accuracy
would contribute more towards the fitness of that individual,
via being allocated a higher weight. In [7], average accuracy
of the trees is used as a fitness function in the multi-tree
representation, which allows all the trees to grow while
giving equal importance to all the four trees. However the
performance of one tree has no influence on the performance
of other trees. In other words, the interaction between trees
during the evolutionary process was quite limited. Therefore,
we designed a new fitness function in this work to evolve better
GP individuals, where trees influence each other’s performance
and interacts during the evolutionary process. It is important
to note here that the interaction between trees is not in terms
of genetic operators (crossover and mutation), but via the
weighted fitness function, which encourages the GP method
to search for an individual with all the four trees having
high classification accuracy, not only one tree like in [7].
Furthermore, after getting an evolved model on the training
data, each tree in a GP individual often produces a different
accuracy on the training data. Among these trees, we take the
top two highest performing trees on the training data and use
them classify unseen test data. This is to use the power of two
models (two trees) to increase the confidence of the prediction.

IV. EXPERIMENT DESIGN

A. Datasets

1) PH2 dataset: This dataset [23] contains dermoscopy
images captured from a specialised instrument for skin cancer
images called dermatoscope. Such high quality images are
rich enough for skin cancer classification. The dataset consists
of 200 images of three classes: common nevi (80 instances),
atypical nevi (80 instances), and melanomas (40 instances). In
dermatology, common nevi refers to non-disease lesion (mole),

Fig. 4. Samples: first 2 columns are from PH2, and second 2 columns are
from Dermofit.

TABLE II
PARAMETER SETTINGS OF THE GP METHOD.

Parameter Value Parameter Value

Generations 100 Crossover Rate 0.80
Population Size 1024 Mutation Rate 0.19
Initial Population Ramped half-and-half Elitism 0.01
Selection type Tournament Tree minimum depth 2
Tournament size 7 Tree maximum depth 6

atypical nevi refers to a currently non-disease lesion, but may
develop malignancy later, whereas melanoma is the diseased
lesion. For the experiments on binary classification, 80 com-
mon nevi and 80 atypical nevi are used as “benign” class, and
40 melanoma are used as “malignant” class. Samples of the
two classes are shown in Fig. 4.

2) Dermofit dataset: The Dermofit Image Library [24] is
a set of 1300 high quality skin lesion images collected under
standardized conditions with internal color standards, captured
from a standard camera. The lesions span across 10 different
classes, where each image has a gold standard diagnosis.
Images consist of a snapshot of the lesion surrounded by
normal skin. For evaluating the binary classification methods,
we have used two classes; 1) Melanocytic Nevus (mole) with
331 images as “benign”, and 2) Malignant Melanoma with 76
images as “malignant”. Samples of the two classes are shown
in Fig. 4.

B. GP Settings

The parameter settings of the proposed multi-tree GP
method are listed in Table II. The evolutionary process keeps
evolving until a stopping criterion is met, which is either
reaching a maximum of 100 generations or when a perfect
individual with accuracy 100% is found.

10-fold cross validation is used in the experiments on these
two datasets, where the ratio of instances of each class in
each fold remains the same as in the original dataset. For
each GP training process, 9 folds are used. The evolved final
GP individual consists of four trees, where the top two trees
(in terms of training accuracy) are selected and are used to
classify the test data (1-fold). This procedure is repeated 10
times using all the different combinations of folds to get the
average result of 10-fold cross validation. This gives the result
for a single GP run. Each GP method has been conducted
30 runs on each dataset, so the above procedure is repeated



30 times. At the end, we get 30 accuracy values each for
training and test instances. The single tree GP and MTGP
methods are implemented using the Evolutionary Computing
Java-based package [25].

C. Classification Methods for Comparison

In order to check the performance of our proposed multi-tree
GP method, we have used six classification algorithms: Naı̈ve
Bayes (NB), k-Nearest Neighbor (k-NN) where k = 1, SVMs,
Decision Trees (J48), Random Forest (RF), and Multilayer
Perceptron (MLP). These methods are implemented through
the Waikato Environment for Knowledge Analysis (WEKA)
package [26]. Similar to the existing approaches [10], [12],
[27], we have used a Radial basis Function (RBF) kernel
instead of the default linear kernel in WEKA. The RBF
kernel helps derive complex relations between the skin lesion
classes and complex nonlinear skin lesion data represented
as a feature vector space [18]. For MLP, the learning rate,
momentum, training epochs and the number of hidden layers
are set to 0.1, 0.2, 60, and 20, respectively. These parameters
are taken from the previous studies [7], [10] where they are
specified empirically as they gave best performance among
other settings.

V. RESULTS AND DISCUSSIONS

A. Overall Results

The results of the experiments are presented in Table III.
Vertically, the table is divided into three blocks where the
first shows the results of the proposed multi-tree GP method
(MTGP) and the baseline method [7] (MTGPold), the second
shows results of the six non-GP classification methods, and
the third shows results of single tree GP methods each using
one type of features. Horizontally, the table is divided into five
columns where first lists the classification algorithm, second
and third show, respectively, the training and test accuracies for
the PH2 dataset, and fourth and fifth show these performances
for the Dermofit dataset. The values of these results are the
mean and standard deviation of the 30 runs of results.

In order to compare the performance of different methods,
Wilcoxon signed-rank test with the significance level of 5% is
used here. This statistical test is applied on the test results to
check which method has better discriminating ability between
benign and malignant classes. The symbols “+”, “=” and
“−” are used to represent significantly better, not significantly
different, and significantly worse performance, respectively,
of the proposed MTGP method in comparison with other
methods. For example, in case of the PH2 dataset, the test per-
formance of MLP is represented as “78.44± 10.96+”, where
the “+” sign represents that MTGP significantly outperformed
the MLP classification method.

The results of the statistical test has clearly shown the
effectiveness of the proposed MTGP method with a weighted
fitness function. It has been observed that the proposed method
has not only significantly outperformed all non-GP methods,
but has also outperformed all single tree GP methods. Fur-
thermore, to highlight the impact of incorporating the new

TABLE III
COMPARISON BETWEEN THE PROPOSED MULTI-TREE GP METHOD, THE
NON-GP AND SINGLE-TREE GP CLASSIFICATION METHODS: ACCURACY

(%) ON THE TRAINING AND TEST SET OF THE TWO DATASETS
(REPRESENTED IN TERMS OF MEAN AND STANDARD DEVIATION (x̄± s)).

PH2 Dermofit

training test training test

MTGP 81.62 ± 1.30 81.08 ± 1.22 77.33 ± 0.95 77.30 ± 1.50
MTGPold 81.36 ± 1.01 78.61 ± 2.00 + 76.79 ± 1.02 75.03 ± 1.90 +

N
on

-G
P

M
et

ho
ds

NB 93.85 ± 1.11 77.81 ± 08.44 +86.42 ± 0.70 72.26 ± 11.62 +
SVM 89.62 ± 1.37 70.00 ± 10.29 +95.16 ± 0.84 70.02 ± 10.34 +
KNN 100.0 ± 0.00 75.63 ± 14.71 +100.0 ± 0.00 72.08 ± 09.52 +
J48 97.05 ± 2.71 71.25 ± 11.08 +97.09 ± 1.31 73.98 ± 10.65 +
RF 100.0 ± 0.00 76.56 ± 09.81 +99.93 ± 0.22 71.30 ± 09.80 +
MLP 78.92 ± 1.23 78.44 ± 10.96 +79.83 ± 1.95 73.00 ± 08.51 +

Si
ng

le
-

tr
ee

G
P

Lesioncolor 83.24 ± 2.57 64.96 ± 3.82 + 81.91 ± 1.41 74.02 ± 2.97 +
Lesionshape 79.70 ± 2.22 50.20 ± 5.21 + 75.92 ± 2.76 62.51 ± 6.82 +
LBPRGB 85.64 ± 1.65 73.27 ± 2.30 + 77.02 ± 1.93 63.61 ± 3.14 +
LBPgray 84.68 ± 1.66 65.96 ± 3.90 + 75.03 ± 2.13 60.02 ± 3.66 +

weighted fitness function into the multi-tree representation on
finding better solutions, the proposed method has significantly
outperformed the baseline (MTGPold) method as presented in
Table III.

While comparing the results of the proposed method with
the traditional single tree GP methods, it shows that the new
MTGP method has more potential to evolve better classifica-
tion models as compared to single tree GP methods. Using a
new weighted fitness function has enabled the different trees in
an individual to interact with each other and generate better
models than the previous approach [7]. Such an interaction
greatly influence the way how a tree in a GP individual
searches for a better solution.

Among the two datasets, different types of features are
prominent in playing the role of classification. In case of the
PH2 dataset, the LBPRGB features have shown the highest
performance (73.27 ± 2.30) among the four single tree GP
methods. In case of Dermofit dataset, the Lesioncolor features
have produced best results (74.02±2.97) among the four single
tree GP methods. From these results, it can be seen that images
captured from a dermatoscope (a specialised instrument for
skin cancer images, such as in PH2), LBPRGB has the highest
ability to discriminate between “malignant” and “benign”
classes, whereas for images taken from a standard camera
(such as in Dermofit dataset), Lesioncolor dominate other types
of features to discriminate between classes. Therefore, we can
conclude that images captured from different instruments need
different feature extraction methods to obtain necessary infor-
mation important for distinguishing between classes. We have
also seen the same behavior in the multi-tree approach while
evolving an individual. Among the four trees, on the PH2

dataset LBPRGB features gave the highest accuracy most of
the cases. In case of the Dermofit dataset, the tree representing
Lesioncolor features usually has the highest accuracy. However,
a tree producing a very good performance on the training data,
might not achieve good results on the test data. Therefore, in
order to maintain better results on the test data, we cannot
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Fig. 5. A good evolved GP individual for PH2 dataset using a)LBPRGB , b) Lesioncolor, c) LBPgray , and d) Lesionshape features.

rely on using only one tree. Therefore, we used the two highest
performing trees to check the performance on the unseen data.
In this way, on the PH2 dataset, if the LBPRGB features alone
cannot achieve good performance on test data, we can still rely
on and achieve better results by using LBPgray features having
the second highest performance. This is one of the advantage
of the MTGP approach, where a single evolved individual
consists of more than one tree and it is possible to use more
trees to get increased performance. Due to this characteristic
of the proposed MTGP method, it has outperformed not only
the single tree GP and non-GP classification methods (Table
III) but also the existing approach [7].

B. Program Analysis

GP evolved models that can be interpreted as they clearly
show which features are potentially prominent in discrimi-
nating between classes. To analyse why the proposed MTGP
method achieved good performance, a good evolved GP in-
dividual is shown in Fig. 5 from the Dermofit experiments.
The individual has four trees, each evolved using one of
the four types of features a)LBPRGB , b) Lesioncolor, c)
LBPgray , and d) Lesionshape achieving 77.94% accuracy
on the test data. In Fig. 5, white nodes represent functions
and colored nodes represent terminals. While evolving this
model on the training data, the individual accuracy values for

LBPgray tree, LBPRGB tree, Lesioncolor tree, and Lesionshape
tree are 66.84%, 79.14%, 85.49% and 80.08%, respectively.
As discussed earlier, for Dermofit dataset Lesioncolor features
has the highest potential to distinguish between melanoma
and benign lesions as compared to other types of feature.
However, the feature types of Lesionshape and LBPRGB are
also giving good accuracy. Hence, performance can be further
improved with the benefit from these trees. Due to the fact that
a high performing tree on the training data might not produce
good result on the test data (overfitting), relying on just one
evolved tree might not produce fruitful results (as has been
observed from comparing the results of MTGPold to that of
the proposed method).

From Fig. 5(b) in the Lesioncolor tree, the features C9

and C3 were selected 5 and 4 times, respectively. Also the
expressions (C3 − C7) and (C8/C9) appear 2 times, which
shows that these features have high discriminating ability. This
is the highest performing tree among the four trees in this
individual. Among the total of 177 LBPRGB features, a tree
in Fig. 5(a) constructed from only six dominant features (R152,
R117, R123, R121, R194, R70) has shown 79.14% accuracy on
the training data. In Lesioncolor tree in Fig. 5(b), C3, C7, C8

and C9 (corresponding to σR, µR

µB
, µG

µB
and µR

µR
) showing the

variance of red channel, ratios of mean of 1) the red channel
lesion area and the blue channel lesion area, 2) the green



channel lesion area and the blue channel lesion area, and 3)
the red channel lesion area and the red channel skin area,
are most important. In Lesionshape tree in Fig. 5(d), S2, S5,
S8, S9, and S10 are selected, which correspond to greatest
diameter, irregularity indices A, and B, major asymmetry
index, and Asymmetry Index, respectively. These border shape
features can provide essential information to the dermatologist
in diagnosing melanoma.

VI. CONCLUSION

This work has developed a new fitness function in a multi-
tree GP method for the task of skin cancer image classi-
fication. Various local and global features are used, which
have information regarding pixel-based gray-level and RGB
characteristics, color variation across the image (inside and
between lesion and skin regions) and geometrical border
shape properties. An individual consists of four trees, each
evolved with one type of features. To meet this requirement,
genetic operators such as crossover and mutation are designed
accordingly, called same-index-crossover/mutation. The use of
a new weighted fitness function has provided better solutions
as compared to the existing method where average accuracy
has been used to evolve a GP model. This fitness function
allows the four trees to influence each other’s performance
during the evolutionary process. Moreover, the top two highest
performing trees on the training data are selected and used to
measure the performance of the unseen test instances. Our
method has outperformed all the single-tree GP methods and
all the most commonly used classification algorithms, showing
evidence of good discriminating ability between “malignant”
and “benign” skin lesions. We have also found an interesting
behavior that different types of features are most prominent for
different types of images captured from different acquisition
devices.

In the future, we would like to investigate GP for feature
extraction directly from skin cancer images. Moreover, for
real-world images, how to reduce noise without losing dis-
criminative features still requires a lot of research.
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