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Abstract. The incidence of skin cancer, particularly, malignant
melanoma, continues to increase worldwide. If such a cancer is not treated
at an early stage, it can be fatal. A computer system based on image pro-
cessing and computer vision techniques, having good diagnostic ability,
can provide a quantitative evaluation of these skin cancer cites called skin
lesions. The size of a medical image is usually large and therefore requires
reduction in dimensionality before being processed by a classification al-
gorithm. Feature selection and construction are effective techniques in
reducing the dimensionality while improving classification performance.
This work develops a novel genetic programming (GP) based two-stage
approach to feature selection and feature construction for skin cancer
image classification. Local binary pattern is used to extract gray and
colour features from the dermoscopy images. The results of our proposed
method have shown that the GP selected and constructed features have
promising ability to improve the performance of commonly used clas-
sification algorithms. In comparison with using the full set of available
features, the GP selected and constructed features have shown signif-
icantly better or comparable performance in most cases. Furthermore,
the analysis of the evolved feature sets demonstrates the insights of skin
cancer properties and validates the feature selection ability of GP to
distinguish between benign and malignant cancer images.

Keywords: Genetic Programming · Image classification · Dimensional-
ity reduction · Feature selection · Feature construction.

1 Introduction

Melanoma is the most serious type of skin cancer, which spreads rapidly to other
parts of the body if left untreated. Hence, early detection is essential, as the
estimated 5-year survival rate for melanoma decreases from over 99% if detected
in earliest stages to about 14% if detected in later stages [7]. New Zealand has the
highest melanoma incidence rate in the world having more than 4000 new cases
each year. Since this cancer is visible on the skin, it is potentially detectable at a
very early stage that can lead to earlier more effective treatment. New computer
vision technologies not only allow earlier detection of melanoma, but also reduces
the large number of needless, costly and painful biopsy procedures [6]. This work
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develops a computational method which may allow medical practitioners and
patients to adequately track skin lesions and detect cancer earlier.

A powerful way to achieve skin cancer detection via computer vision is to
use dermoscopy images, and form the task as a binary image classification prob-
lem, i.e., benign and malignant classes of images [22]. For skin cancer classi-
fication, important characteristics for distinguishing between different cancer
types, are based on dermoscopy criteria, specifically, Asymmetry, Border, Colour,
and Diameter (ABCD) rule [20], and 7-point check-list method [4] (Asymmetry,
Pigment network, Dots/Globules, Streaks, Regression areas, Blue-whitish veil
and presence of Colours; white, red, light-brown, dark-brown, blue-gray, black).
These are the key medical properties that help dermatologists for classification
of various types of cancer. The dermosopic images are huge in size, whereas the
relevant information about the disease is confined in a limited number of pixels
or features in these images. Hence, there is a need for dimensionality reduction
which aims at reducing the number of features and selecting only prominent
features having good discriminating ability between classes. This helps reduce
computation time as well as increase performance and interpretability of the
commonly used classification algorithms. Moreover, in order to find which salient
texture patterns or image features in these images are the cause behind a partic-
ular cancer type, interpretable methods are required to provide insights of these
critical features.

Genetic Programming (GP) is an evolutionary computation (EC) algorithm
based on Darwinian principles of biological evolution and natural selection [11].
GP automatically explores the solution space to evolve a computer program
(model/solution), often represented by a tree-like structure, for a given problem
[11]. GP has the ability to perform implicit feature selection by selecting promi-
nent features at its terminal (leaf) nodes and the goodness of the evolved program
is evaluated by a fitness measure [2]. Feature selection (FS) selects a subset of
original features while feature construction (FC) creates a new feature(s) from
the original set of features [21]. FC involves transforming a given set of input
features to generate a new set of more powerful features [17]. FS and FC both
can help improve performance by selecting relevant features and constructing
new high-level features. Hence, FS and FC are good tools not only to improve
performance, but also to reduce the dimensionality and hence provide features
which take less computation time while being processed by the classification al-
gorithm. Moreover the medical practitioners are interested in finding the cause of
a disease, and a system is highly recommended to have such causal information.
With the property of GP evolved programs being interpretable, giving informa-
tion about which features are prominent in constructing new high-level features,
the medical practitioners can gain deep understanding of which specific texture
patterns and colour variations are the cause of the disease. However, there is
limited work done to FS and FC in dermoscopy image classification.

Goals: This work develops a new FS and FC method using GP for skin
cancer image classification problems. Different from most existing methods, the
proposed method aims at constructing features only using the GP-selected fea-
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tures, which can have the ability to construct more informative features as com-
pared to construct features from all of the original features. GP-selected and
GP-selected-constructed features will be applied with common machine learning
algorithms for classification. This work aims to address the following questions:

– Which features get selected by GP during the evolutionary process to achieve
better classification performance and why?

– Whether GP can construct informative feature from GP-selected features
that improve the performance of common classification algorithms for the
task of skin cancer image classification?

– Whether GP-selected-constructed features provide better discriminating
ability while using colour features or gray-scale features?

– How well this new method works as compared to other existing method?
– While analyzing the pixel-based texture patterns, how the GP-selected fea-

tures can help identify those patterns which are prominent in effectively
contributing to the classification performance?

2 Background

2.1 Related Work

Over the last two decades, several computer-aided diagnostic (CAD) systems [7]
have been developed to help medical practitioners distinguish between benign
and malignant skin lesions [1, 8, 22]. Zortea et al. [22] developed a CAD tool
based on a camera with attached dermatoscope, and compared its performance
to three experienced dermatologists. The system extracts features related to the
asymmetry, colour, border, geometry, and texture of skin lesions, computed from
automatically segmented images. With a dataset of 206 skin lesions, the classifier
(quadratic discriminant analysis) provided competitive sensitivity (86%) and
specificity (52%) compared to the most accurate dermatologist. Sensitivity is the
accuracy of correctly classified diseased instances and specificity is the accuracy
of correctly classified non-disease instances.

Abuzaghleh et al. [1] proposed a non-invasive real-time automated skin lesion
system for the early detection and prevention of melanoma. This system has two
components: 1) a real-time alert to help the users prevent skin burn measured by
an equation, and 2) an automated image analysis module capable of capturing
and classifying the lesion images. The second module includes image acquisi-
tion, hair removal, lesion segmentation, feature extraction, and classification.
The method used the standard overall classification accuracy (i.e. the number
of correctly classified instances divided by the total number of instances) as a
fitness measure which is not suitable for an imbalance dataset [19]. Esteva et al.
[7] demonstrated the classification of skin lesions using convolutional neural net-
work (CNN) trained from images, using only pixels and class labels. The CNN
was trained using thousands of images, from 2,032 different classes and its perfor-
mance is tested against 21 dermatologists on biopsy-proven clinical images. The
CNN method outperformed all the experts, demonstrating artificial intelligence
being capable of classifying skin cancer with a level of competence comparable
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Fig. 1. The LBP process.

to dermatologists. Generally, the performance of CNN is primarily constrained
by data and can only classify well provided sufficient training examples which
leads to long computation time and requires huge computing resources.

Menegola et al. [15] demonstrated transfer learning for automated melanoma
screening using deep neural network (DNN). One of the key limitation of using
pre-trained DNN is that the images must be resized to match the architecture.
In [7] and [15], the images are resized to a smaller size distorting the aspect
ratio, which badly effects the texture patterns important to discriminate between
classes. In [3], GP has been utilized to automatically evolve a classifier for binary
skin cancer image classification based on domain specific features provided by
the dermatologists and texture features extracted by local binary patterns. The
experiment results and analysis of the evolved programs confirmed the ability of
GP for feature selection. Motivated by this feature selection ability, we will use
GP as a feature selection and feature construction method in our current work.

Despite extensive research in investigating the diverse presentations and
physical characteristics of skin cancer, the clinical diagnostic accuracy remains
suboptimal. Skin lesion classification is a very challenging problem for several
reasons including relatively poor contrast between the skin and lesion areas, vari-
ations in skin tone, presence of artefacts (hairs, ink, gel bubbles, date markers,
ruler marks, etc.), non-uniform lighting, physical location of the lesion and most
importantly variations in the lesion itself in terms of shape, size, colour, texture
and location in the image frame [16]. While designing a robust skin cancer image
classification algorithm, these factors must be considered which makes this task
harder as compared to other image classification problems.

2.2 Local Binary Patterns

Local binary patterns (LBP) is a dense image descriptor developed by Ojala et
al. [18] that has been extensively used for feature extraction in a wide range of
computer vision tasks. LBP scans the image in a pixel-by-pixel fashion using a
sliding window of fixed radius. The central pixel value is computed based on the
intensity values of neighbouring pixels lying on the radius as depicted in Fig. 1.
It then generates a histogram (i.e. feature vector) based on the computed values.
The LBP operator is defined as:

LBPp,r =

p−1∑
i=0

S(vi − vc)2
i (1)

where p is the number of neighbouring pixels, r is the radius, vi and vc are the
intensity values of the ith neighbour and central pixel, respectively. S(x) returns
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0 if x < 0 and 1 otherwise. The value computed from the above expression is
assigned to central pixel and corresponding bin of histogram is incremented by
1. The value of tth bin of a histogram H computed on an image of size m×n as:

H (t) =

m−1∑
i=0

n−1∑
j=0

(LBPp,r (Vi,j) = t) (2)

where the value of t ranges from 0 to T − 1, T is the maximum number of bins
in the histogram, and Vi,j is the value of the pixel at coordinate (i, j). Moreover,
there are two kinds of LBP codes: uniform and non-uniform. A code is uniform
if circularly it does not have more than two bitwise transitions from 0 to 1 or
1 to 0. For example, the codes 00111000, 00001111, and 10000001 are uniform,
whilst the codes 00110110, 01001110, and 01010100 are non-uniform. Uniform
codes detect various texture primitives such as corners, edges, line ends, dark
spots and flat regions in images. Using only uniform codes, the size of the feature
vector can be reduced from 2p bins to p (p− 1)+3 bins, simply by combining non-
uniform codes. In dermoscopy images, uniform codes help in detection of streaks
(line ends) and blobs space (flat regions) which may help improve performance.

3 The Proposed Method

The proposed GP method is described in this section. It consists of two stages;
one for feature selection (stage-1) and second for feature construction (stage-2).
The overall structure is depicted in Fig. 2 and Fig. 3. First the images are con-
verted to feature vectors by using LBP as discussed in Section 2.2. Then these
features are fed into GP method. GP has the ability of implicit feature selec-
tion during its evolutionary process, since not all the features are used as the
leaf nodes of a GP tree. The leaf nodes of a GP tree are the selected features.
With the help of genetic operators, such as crossover and mutation, GP evolves
a classifier/GP tree including informative features. These selected features usu-
ally have high discriminating ability between classes. After performing GP for
multiple runs, i.e. 10, the features appearing in the best individual (evolved tree)
having highest performance on training data are selected.

The selected features which are obtained from stage-1 are used as the input to
stage-2 for feature construction. Here again after the 10 individual GP runs, the
evolved individual/tree having the highest performance on the training data is
selected. The evolved tree is the one constructed feature which will be used along
with GP-selected features (computed after stage-1) for classification. To this end,
we have the selected features (outcome of stage-1) and a constructed feature
(outcome of stage-2). These selected and constructed features are concatenated
to form the final feature vector, which will be given to the classification method.

In order to deal with FS bias and FC bias issues, the dataset is divided into
10 folds where 9 folds are used for training and 1 fold for testing, such that only
training folds are used for FS and FC and the test fold remain unseen during
the learning process. The method used for FS and FC using the training data to
evolve selected features (outcome of stage-1) and to evolve constructed feature
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Fig. 2. Training process: Training images are first converted to feature vectors using
LBP which are given to GP method for feature selection (stage-1). Among the 10 GP
runs, the best GP tree having highest performance is selected. Features appearing in
this GP tree are called GP-selected features which are then given to GP method for
feature construction (stage-2). Again among the 10 GP runs, the best performing GP
tree is selected which is called GP-constructed feature. A new feature vector having
GP-selected and GP-constructed feature is formed which is given to the classifier.

Fig. 3. Test process: Each test image is converted to a feature vector using LBP (here
features from f0 to f58 represents 59 LBPgray features. Based on best GP tree (T1),
evolved on training data in stage-1, some of the features are selected (e.g. f12, f9, f50,
f41). These feature values are fed into the best GP tree (T2) evolved on training data
in stage-2 to get GP-constructed feature value for each test image. GP-selected and
GP-constructed features make the final feature vector to be given to the classifier.

(outcome of stage-2) is illustrated in Fig. 2. For getting the transformed feature
vectors for the test instances, the method illustrated in Fig. 3 has been adopted
in this work.

3.1 Fitness Function

Having (very) different number of instances in different classes is commonly re-
ferred as a class imbalance problem. In this case, the use of the standard overall
classification accuracy, defined as the ratio (Ncorrect

/
Ntotal) between correctly

classified instances (Ncorrect) and total number of instances (Ntotal), is inap-
propriate. Alternatively, the balanced classification accuracy has been used as
a good measure for imbalance classification problems[19], since it gives equal
importance to both classes without any bias. Therefore, we adopted it as the
fitness function in this study, which is given in Equation (3):

Fitness =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(3)
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where TP , TN , FP , and FN refers to true positive, true negative, false positive,
and false negative, respectively, where malignant is the positive class and benign
is the negative class.

3.2 Terminal Set and Function Set

The terminal set consists of uniform LBP features. Gray-level LBP features
(referred as LBPgray) are a total of 59 features and colour LBP features (referred
as LBPrgb) are 177 features. For computing LBPrgb, a colour image is converted
to its red, green and blue channel images and then LBP features are extracted
from each of them. Hence there are a total of 177 (= 59 LBP features × 3
channels) LBPrgb features. The value of the ith feature is indicated as Fi. The
window size of 3×3 pixels and a radius of 1 pixel (LBP8,1) is used.

The function set consists of four arithmetic operators, two trigonometric func-
tions and one conditional operator, which are {add, sub,mul, div, sin, cos, if }.
The first three arithmetic operators and the two trignometric operators have
the same arithmetic and trigonometric meaning. However, division is protected
that returns 0 when divided by 0. The if operator takes four inputs and returns
the third if the first is greater than the second; otherwise, it returns the fourth.

4 Experiment Design

4.1 Dataset

A dataset of dermoscopy images namely PH 2 [14] gathered at Pedro Hispano
Hospital Portugal, is used in the experiments. Dermoscopy is a non-invasive tech-
nique that allows microscopic visualization of inner skin morphological structures
not visible to the naked eye [13]. Such images are rich enough to investigate them
for presence/absence of skin cancer. The images are 8-bit RGB (red, green and
blue) color images. The dataset includes 200 images which belong to three classes:
common nevi (80 instances), atypical nevi (80 instances), and melanomas (40
instances). In dermatology, common nevi refers to non-disease lesion, atypical
nevi refers to a currently non-disease lesion, but has chances to develop malig-
nancy at a later stage, and melanoma is the diseased lesion. For our experiments
focusing on binary classification, 80 common nevi and 80 atypical nevi are used
as “benign” class, and 40 melanoma are used as “malignant” class. Samples of
the two classes are presented in Fig. 4.

For performing the experiments, 10-fold cross validation is used. The dataset
is divided into ten folds such that nine folds are used for training and one fold
for test. In our experiments features are selected and constructed using nine
(training) folds and the last (test) fold remains unseen during this FS and FC
processes in order to avoid FS and FC biases. This process is repeated ten times
for all the different combinations of folds and the results are reported as mean
and standard deviation of the fitness value. All the folds are randomly selected
but are ensured that the ratio of instances of each class in each fold is the same
as in the original dataset.
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Fig. 4. Some dermoscopy images: benign lesions (first two), and melanomas (last two).

Table 1. Parameter settings of the GP method.

Parameter Value Parameter Value

Generations 50 Initial Population Ramped half-and-half
Population Size 1024 Selection type Tournament
Crossover Rate 0.80 Tournament size 7
Mutation Rate 0.19 Tree minimum depth 2
Elitism Rate 0.01 Tree maximum depth 8

4.2 GP Parameters

The GP parameters are listed in Table 1. For generating the initial population,
“Ramped half-and-half” method is used and the population size is set to 1024.
Tournament selection with size 7 is applied to pick good individuals for producing
new generations while maintaining population diversity. During the evolutionary
process, the percentages for producing new individuals through crossover, muta-
tion and elitism are 0.8, 0.19 and 0.01, respectively. The depth of the trees ranges
between 2 and 8. After reaching a maximum of 50 generations, the evolutionary
process stops unless a perfect individual with accuracy 100% is found.

For stage-1, the number of individual GP runs is 10. Among these 10 evolved
trees, the one having highest performance on the training data is selected and
the features appearing in that tree (GP-selected features) are used as input to
stage-2 for feature construction. Here in stage-2, GP runs for 10 times and evolves
trees. Again the best performing tree among the 10 evolved trees on the training
data is selected as the constructed feature. The above procedure is repeated 30
times to get 30 sets of selected and constructed features. Note that the test folds
remain unseen during both stages in order to avoid FS and FC biases. In one
set of experiments, the random seeds for each of the 10 runs are all different.
The implementation of GP method is done using the Evolutionary Computing
Java-based (ECJ) package version 23 [12].

4.3 Methods for Classification

To check the performance of the feature sets obtained from GP on the test set,
six classification methods are applied: Näıve Bayes (NB), k-Nearest Neighbor
(k-NN) where k = 1 (the closest neighbor), Support Vector Machines (SVM),
Decision Trees (J48), Random Forest (RF), and Multilayer Perceptron (MLP).
The implementations of all these methods are taken from the commonly used
Waikato Environment for Knowledge Analysis (WEKA) package [9]. In a study
[10] on kernel functions in SVM, it has been shown that non-linear kernel can
achieve similar or better performance than linear kernel. Hence, a Radial basis
Function (RBF) kernel is used instead of the default linear kernel in WEKA.
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For MLP, the learning rate, momentum, training epochs and number of hidden
layers are set to 0.1, 0.2, 60, and 20, respectively. These parameters are specified
empirically as they gave the best performance amongst other settings.

5 Results and Discussions

5.1 Overall Results

The results of the two experiments using LBPgray and LBPrgb are presented in
Table 2. Vertically, the table comprises of two blocks where first corresponds to
the results of using LBPgray features and second shows results of LBPrgb features.
Horizontally, the table consists of 7 columns where first lists the classification al-
gorithm, second and third show respectively the training and test performances
using all features represented by “All”. The rest of the columns show training
and test performances using GP-selected, and GP-selected-constructed features.
The values of the results using all features is the mean and standard deviation
of applying 10-folds cross validation to the dataset. For “GP-selected” and “GP-
selected-constructed” columns, the training (Fig. 2) and test (Fig. 3) processes
are repeated 30 times, hence we get 30 accuracies for each classifier which are
represented as mean and standard deviation (x̄±s) in Table 2. For making a clear
comparison between using different feature-sets, the results are also tested using
Wilcoxon signed-rank test with a significance level of 5%. The statistical test has
been applied on the test results to check which feature-set has better ability to
discriminate between benign and malignant classes. The symbols “+”, “−” and
“=” are used to represent significantly better, significantly worse and not signif-
icantly different performance, respectively, of the two features-sets (GP-selected
and GP-selected-constructed) in comparison with all features. For example, in
LBPrgb block the test performance of SVM using GP-selected features is rep-
resented as “76.42 ± 1.35+” where the “+” sign represents that GP-selected
features have significantly outperformed all features.

Analysing the effect of dimensionality reduction, it has been seen that while
using LBPgray features (59 in total), GP selects only half of the features (around
28) in its tree having tree depth of 8. Here the number of features is 28.26
computed as average number of features appeared in 30 evolved GP trees. In
case of LBPrgb, the reduction in number of features is significant (from 177 to
around 35). Except k-NN, all the classification algorithms have achieved either
better or comparable performance for classifying skin cancer images. This shows
that GP with its feature selection ability, has pushed most of the classification
algorithms achieve good classification performance even with reduced number
of features. Moreover, the feature constructed by GP-selected features are more
powerful in creating good training models as compared to feature constructed by
all set of features. This is evident when comparing GP-selected and GP-selected-
constructed results. Our method allows GP to perform implicit feature selection
twice during each stage, which helps improve the classification performance.

Variation in colour of malignant melanoma is a major discriminative aspect
for dermatologists [5] which is validated by the results as well. Comparing the
results of gray features and colour features, colour features have shown better
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Table 2. The accuracy (%) on the training and test set using all features, GP-selected
features, and GP-selected-constructed features (results are represented in terms of
mean accuracy and standard deviation (x̄± s)).

All GP-selected GP-selected-constructed
(59 feature) (28.26 feature) (29.26 feature)

training test training test training test

L
B
P

g
r
a
y

NB 71.63 ± 2.97 63.44 ± 12.2 72.12 ± 0.89 65.75 ± 1.71+ 74.32 ± 1.46 65.71 ± 2.46+
SVM 89.93 ± 1.36 70.94 ± 11.9 80.79 ± 1.50 70.29 ± 1.67− 84.11 ± 1.79 70.94 ± 2.55=
KNN 100.0 ± 0.00 71.25 ± 9.46 100.0 ± 0.00 67.76 ± 1.94− 100.0 ± 0.00 67.55 ± 1.99−
J48 88.89 ± 8.68 61.56 ± 13.7 85.97 ± 2.79 62.94 ± 2.69+ 92.03 ± 1.73 64.84 ± 3.55+
RF 100.0 ± 0.00 62.81 ± 10.2 100.0 ± 0.00 64.17 ± 1.48+ 100.0 ± 0.00 65.97 ± 2.02+
MLP 74.44 ± 1.53 67.81 ± 8.62 69.76 ± 1.69 66.16 ± 2.15− 73.81 ± 2.04 67.33 ± 2.29=

(177 feature) (34.89 feature) (35.95 feature)

training test training test training test

L
B
P

r
g
b

NB 79.10 ± 1.62 76.25 ± 8.75 78.19 ± 0.75 76.04 ± 1.81= 79.82 ± 0.96 76.21 ± 1.91=
SVM 100.0 ± 0.00 75.00 ± 13.6 85.29 ± 1.14 76.42 ± 1.35+ 87.59 ± 1.44 75.77 ± 2.41=
KNN 100.0 ± 0.00 74.69 ± 13.7 100.0 ± 0.00 73.31 ± 1.88− 100.0 ± 0.00 73.31 ± 1.88−
J48 90.87 ± 8.31 73.13 ± 9.60 83.22 ± 1.59 73.39 ± 1.96= 92.08 ± 1.17 72.74 ± 2.84=
RF 100.0 ± 0.00 75.94 ± 9.79 100.0 ± 0.00 75.34 ± 1.47− 100.0 ± 0.00 75.53 ± 1.72=
MLP 84.13 ± 1.69 76.88 ± 10.1 80.32 ± 0.62 78.17 ± 0.83+ 82.55 ± 1.08 77.54 ± 1.67+

performance in almost all cases. According to the overall results, MLP achieved
the highest performance, i.e., 78.17% ± 0.83, which is comparatively well enough
as compared to the state-of-the-art method [5] having 84.3% balanced accuracy
on the same dataset and same fitness measure, considering overhead of prepro-
cessing and manual segmentation, which requires human expertise in [5].

5.2 Analysis of the Evolved Features

To see why the GP-selected-constructed features can achieve good performance,
we show a good GP tree (Fig. 5) among the 10 GP runs after stage-2 having
90.63% accuracy on the training set. This tree is taken from LBPrgb experiments
where the total number of features is 177. In the figure, gray nodes represent
functions and white nodes represent terminals. Note that for constructing this
tree, features selected by a tree in stage-1 are used only and not the whole feature
set. Hence, employing feature selection twice. This tree is constructed from ten
LBPrgb features appeared in a tree in stage-1, which are F15, F40, F68, F90, F95,
F105, F113, F117, F119, and F154. The values of these 10 selected features (after
stage-1) and the constructed feature (after stage-2) are plotted in a bar chart
shown in Fig. 6. For analysis of the selected feature, we take the simple example
of features F15 and F154. As an example, we take the values of these features
for only two instances from each class. The bar plot shows that the values of
F15 (shown in black) and F154 (shown in green) for the benign instances (B1
and B2) are high as compared to values for malignant instances (M1 and M2).
Hence, by combining these GP-selected features, the constructed feature divides
instances of the two classes into two completely separate intervals as shown by
blue colour in Fig. 6. Therefore, using these powerful GP-selected-constructed
features from the selected features, the common classification algorithms become
able to achieve better discrimination between the benign and malignant classes,
resulting in improved classification performance.
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Fig. 5. A good evolved GP tree after stage-2 having 90.63% accuracy on training data.

-40% -20% 0% 20% 40% 60% 80% 100%

F113 F68 F117 F119 F40 F105 F90 F154 F15 F95 CF

M2

M1

B2

B1

Fig. 6. Bar chart showing the values of different selected features after stage-1 and
value of constructed feature “CF” after stage-2.

We further analyse the LBP texture pattern of these two features F15 and
F154 to match skin cancer image properties like streaks and blobs. Fig. 7(a)
shows the extracted 3×3 window for F15, its transformed LBP mask and the his-
togram showing the given pattern added to the malignant class bin represented
as C2. This mask shows presence of line ends in the image, which matches the
presence of streaks in malignant images. According to the bar chart, this value
is less for malignant images and high for benign images, which helps our method
to distinguish between the two classes effectively. Similarly, Fig. 7(b) shows the
extracted 3×3 window for F154, its transformed LBP mask and the histogram
showing the given pattern added to the benign class bin represented as C1. This
mask shows the presence of corners in an image. Its value for the malignant
class is lower as compared to the benign class. This maps to the structure of
the benign and malignant lesions. The benign lesions are often a confined dense
structure having less variation in colour, however malignant lesions have often
sparse structure, spreading over a larger region with no defined boundary and
varying colour (refer to Fig. 4 and Fig. 7 for a visual illustration).

6 Conclusions

Motivated by the powerful ability of GP in feature selection and feature construc-
tion, we developed a GP based two-stage method for feature selection (stage-1)
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(a) (b)

Fig. 7. Feature analysis (a) Malignant, and (b) Benign.

and feature construction (stage-2) for the task of skin cancer image classifica-
tion. The GP selected and constructed features together have shown powerful
ability to help common classification algorithms achieve better performance as
compared to using the full set of features. Our method constructed new fea-
tures from GP selected features, hence using the feature selection ability twice,
resulting in more powerful constructed features. Using these GP selected and
constructed features, the classification algorithms have shown to provide effec-
tive solutions for the real-world cancer detection problem. The results have also
shown that colour features have more potential to distinguish between benign
and malignant skin lesions as compared to gray features. We further analysed
the GP selected features and GP constructed features to get into the insights of
skin cancer properties. It has been found that the LBP patterns can be mapped
to skin cancer properties, explaining the contribution of the selected features to-
wards their distinguishing behaviour. In the future, we would like to investigate
the effect of employing preprocessing techniques to remove noise from the im-
ages. We are also interested to further investigate the classification performance
of our method by using a different dataset and also focus on the computation
time to make it effective for real-world applications like skin cancer diagnosis.
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18. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition 29(1), 51–
59 (1996)

19. Patterson, G., Zhang, M.: Fitness functions in genetic programming for classifica-
tion with unbalanced data. In: Proceedings of the 2007 Australasian Joint Confer-
ence on Artificial Intelligence. pp. 769–775. Springer (2007)

20. Stolz, W., Riemann, A., Cognetta, A.B., Pillet, L., Abmayr, W., Holzel, D., Bilek,
P., Nachbar, F., Landthaler, M.: ABCD rule of dermatoscopy: a new practical
method for early recognition of malignant-melanoma. European Journal of Der-
matology 4(7), 521–527 (1994)

21. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Transactions on Evolutionary Computation
20(4), 606–626 (2016)

22. Zortea, M.e.a.: Performance of a dermoscopy-based computer vision system for the
diagnosis of pigmented skin lesions compared with visual evaluation by experienced
dermatologists. Artificial Intelligence in Medicine 60(1), 13–26 (2014)


