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Abstract

We introduce a new spreadsheet based interface called
SpaceSheets for creating novel images and other me-
dia. Unlike traditional digital tools, ours is parame-
terized entirely by a neural network with no prepro-
grammed rules or knowledge representations. The ca-
pability of SpaceSheets to support visual exploration
and communication is demonstrated within the context
of several domains including facial images, fonts, and
english words. SpaceSheets is demonstrated to support
the experimentation and exploration of latent spaces en-
abling more effective design experimentation.

Introduction

Problem solving can be viewed as a search for a solution
within a space. In design, this process involves generating
solutions and evaluating their consequences relative to goals
and constraints (Simon 1995). These experiments are en-
abled through representations in the form of drawings and
diagrams. Computational design tools enable users to con-
struct and manipulate representations digitally. These tools
often impose a high cost to design experimentation due to
the mismatch between low-level design operations in ex-
pressing more abstract design intent.

Generative models learn more compact representations of
the training data in a vector space of latent variables. Latent
variables are sampled from high-dimensional latent space
and can be decoded back into observable values. Addi-
tionally, semantic operations can be performed within latent
space using vector arithmetic (White 2016).

Spreadsheet interfaces are a ubiquitous part of office pro-
ductivity suites. They enable users to perform experimen-
tal calculations using a set of formulae which define rela-
tionships spatially. Automatic recalculation supports exper-
imentation by enabling users to observe the results of their
actions immediately and act accordingly.

We developed SpaceSheet (Figure 1) to leverage the fa-
miliarity and power of spreadsheet interfaces for the pur-
pose of design experimentation within latent space. It has
been adapted to enable non-experts to explore and experi-
ment within latent spaces.

Figure 1: The SpaceSheet being used to perform an average
between two latent variables

Background
Conceptual Spaces
Generative models are a popular approach to unsupervised
machine learning. Generative neural network models are
trained to produce data samples that resemble the training
set (Karpathy et al. 2016). Because the number of model
parameters is significantly smaller than the training data, the
models are forced to discover efficient data representations.
These models are sampled from a set of latent variables in a
high-dimensional space, called a latent space. Latent space
can be sampled to generate observable data values. Learned
latent representations often also allow semantic operations
with vector space arithmetic (Figure 2), a phenomenon dis-
covered previously in the latent space of language mod-
els (Mikolov et al. 2013).

Generative models are often applied to datasets of im-
ages. Two popular generative models for image data are
the Variational Autoencoder (Kingma and Welling 2013)
(VAE) and the Generative Adversarial Network (Goodfel-
low et al. 2014) (GAN). VAEs use the framework of prob-
abilistic graphical models with an objective of maximizing
a lower bound on the likelihood of the data. GANs instead
formalize the training process as a competition between a
generative network and a separate discriminative network.
Though these two frameworks are very different, both con-
struct high-dimensional latent spaces that can be sampled
to generate images resembling training set data. More-
over, these latent spaces are generally highly structured and
can enable complex operations on the generated images by
simple vector space arithmetic in the latent space (Larsen,

Proceedings of the 10th International

Conference on Computational Creativity 2019
ISBN:978-989-54160-1-1

9



Figure 2: Schematic of the latent space of a generative
model. In the general case, a generative model includes
an encoder to map from the feature space (here images of
faces) into a high-dimensional latent space. Vector space
arithmetic can be used in the latent space to perform se-
mantic operations. The model also includes a decoder to
map from the latent space back into the feature space, where
the semantic operations can be observed. If the latent space
transformation is the identity function we refer to the encod-
ing and decoding as a reconstruction of the input through the
model.

Sønderby, and Winther 2015).
In the latent space of generative models, many high-level

attributes can be represented as a vector (Figure 3). Using
techniques from (White 2016), multiple attributes can be
decoupled further to create a visualization of possible states
across multiple semantic vectors (Figure 4). For example,
when trained on a dataset of portraits, latent vectors can be
computed for ”smiling” and ”mouth open” which then ap-
plied to new face images.

Figure 3: Traversals along the smile vector using a GAN
model from (Dumoulin et al. 2016)

Prior to the discovery of neural network latent spaces
supporting semantic operations, cognitive science had hy-
pothesized the existence of knowledge representations that
were primarily geometric instead of symbolic. One primary
proponent was Gärdenfors who proposed a framework of
”Conceptual Spaces” as structured multi-dimensional fea-
ture spaces to support modeling information processes such
as concept learning and prototype theory (Gärdenfors 2011).
Notably, conceptual spaces were proposed as a model of
how people structure concepts, independent of any pro-
posed computational implementation of how they might
come about.

We adapt the terminology and claim that latent spaces
of generative neural networks function as conceptual spaces

Figure 4: Decoupling attribute vectors for smiling (x-axis)
and mouth open (y-axis) allows for more flexible latent
space transformations. Input shown at left with reconstruc-
tion adjacent. Using a VAE model from (Lamb, Dumoulin,
and Courville 2016)

which can be used as non-symbolic knowledge representa-
tion layers in other tools. With this framework, we examine
the ability of this representation layer built from the latent
space of a generative neural network model to support a new
type of spreadsheet interface tool. The tool itself is domain
independent and is shown to be useful in several domains.
In exploring these particular domains, our tool constructs
subspaces of the larger conceptual space of possibilities as a
parameter space of a spreadsheet driven exploration tool.

Supporting Design Experimentation
Design principles have been identified by (Resnick et al.
2005) and (Terry and Mynatt 2002) for user interfaces to
support design experimentation and exploration.

These principles can be summarised by the three user
interface requirements proposed in Design Principles for
Tools to Support Creative Thinking (Resnick et al. 2005)
(paraphrased): It must be very easy to try things out and
then backtrack when unsuccessful. Tools should be ‘self-
revealing’ in what they can achieve. Make it very fast to
sketch out different alternatives

These principles are supported by (Terry and Mynatt
2002) where they identify three activities in the process
of reflection-in-action (Schon 1984) that should be sup-
ported by user interfaces for design experimentation. They
are: Near-Term Experimentation, Generating Variations,
and Evaluation.

Near-Term Experimentation is used to describe actions
which intend to “discover and instantiate the next move”
(Terry and Mynatt 2002, p. 39). In a user interface, users
would make hypotheses about the next action to be made,
and test their hypothesis by “invoking a command and ad-
justing its settings to achieve the imagined effect”. The users
would then “either accept the command, tweak the parame-
ters more, or undo it and try another tact” (Terry and Mynatt
2002, p. 40).

Variations are created by the designer to explore alter-
natives deeply. It enables them “to better understand the
problem, its boundaries, and potential solutions” (Terry and
Mynatt 2002, p. 40). An example of this is where design-
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ers make “multiple variations of a specific component by
creating them side-by-side on a large canvas ... and iterate
on promising versions to arrive at an acceptable solution”
(Terry and Mynatt 2002, p. 40).

Users need to evaluate their progress as they work on a
task. This happens after near-term experiments, as well as
after generating variations: “the moment in which the indi-
vidual reassesses the problem and their understanding of it,
before making the next move” (Terry and Mynatt 2002, p.
40).

Spreadsheet as a Design tool
Spreadsheets may seem like an unlikely design tool. How-
ever, the ability to express relationships between cells make
it functionally suited to express operations in latent space.
Additionally, it satisfies the three user requirements for
software to support design experimentation — Near-Term
Experimentation, Generating Variations, and Evaluation as
proposed by (Terry and Mynatt 2002).

Near-term experimentation is supported by the automatic
updating feature of the spreadsheet. Users are able to set
up scenarios of logic and calculate the results to ‘what if’
questions instantly by modifying the cell values. This estab-
lishes a tight feedback loop between the user’s actions and
its implications. When coupled with the ability to undo ac-
tions, it enables users to discover and instantiate moves, and
backtrack if the results are unsatisfactory.

The generation of variations is supported by enabling
users to duplicate instances of data onto other cells within
the document. These copies can then be modified indepen-
dently from the original data.

Evaluation is supported by enabling users flexibility in
how they choose to organise data in the document. Users
can set up custom templates in a layout which best supports
their preferences and the problem to be solved.

In addition to their promise in supporting design exper-
imentation, spreadsheet software is well-established within
office productivity suites. Users with an understanding of
how conventional spreadsheets function are able to transfer
their understanding to the use of the design tool.

SpaceSheet
SpaceSheet consists of a data picker exposing latent vari-
ables to operate with and a spreadsheet to define operations
between the variables. In both, latent variables are decoded
into observable images.

Data Picker
The data picker is a predetermined set of latent variables
which have been organized into a grid. The set of variables
in the data picker act as the points of reference from which
the latent space can be explored from. Diversity has been
prioritized in the selected set to maximize the variety of pos-
sible outcomes that can be explored. Multiple data pickers
have also been implemented as tabs to provide various pre-
baked distributions of latent variables.

Spreadsheet
The spreadsheet is the main workspace of the tool. It en-
ables users to express relationships between cells using for-
mulae. Operations between cells containing latent variables
are computed with vector arithmetic, and its result is de-
coded into an image. Common operations can be defined
by clicking on buttons at the top of the spreadsheet. These
buttons are selection-aware, and highlight to suggest opera-
tions based on the selected cells. A live SpaceSheets demo
is available online1 and the appendix contains a list of sup-
ported operations and sample workflows.

Applications

Figure 5: SpaceSheet with Font Model

Initial efforts are focused on experimenting in various do-
mains to encourage the development of a general-purpose
model agnostic set of operations. A SpaceSheet to explore a
generative model of fonts (Bernhardsson 2015) has been im-
plemented to be used as a design tool (Figure 5). User testing
indicated that the tool enabled designers and non-designers
alike to explore design variations easily (Loh 2018).

Figure 6: SpaceSheet with word2vec

1https://vusd.github.io/spacesheet/
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The concepts have also been extended to domains other
than images and with models that are not generative, such
as the Word2Vec model (Mikolov et al. 2013). This version
of the SpaceSheet can be used to find word analogies and
perform interpolations using nearest neighbors (Figure 6).

A SpaceSheet has been created to enable the exploration
of the BigGAN model (Brock, Donahue, and Simonyan
2018). In this implementation, the primary DataPicker for
this implementation has been curated to enable users to ex-
periment with a variety of image classes (Figure 7).

Figure 7: BigGAN SpaceSheet with a generic DataPicker
across all image classes

Custom DataPickers of other classes, or combinations of
other classes can be created using the DataPicker creator
(Figure 8). The DataPicker creator enables users to a) ex-
plore and select one or more classes from a searchable, hi-
erarchically organised tree checklist, b) control the amounts
of each class to composite in the resulting class, and c) pre-
view example reconstructions of the resulting class before
creating a DataPicker of the resulting class. Once created,
this new custom DataPicker will be available for use in the
spreadsheet (Figure 9).

Figure 8: BigGAN SpaceSheet custom DataPicker interface

Evaluation
User testing of SpaceSheets on a model of fonts (Loh 2018)
revealed that the tool enabled a novel method to experiment
with designs. Users explore design possibilities from a top-
down approach by deriving meaning and navigating within a

Figure 9: BigGAN SpaceSheet with a custom DataPicker
made from combining a user-provided ratio of the ”Bubble”,
”Granny Smith”, and ”Velvet” image classes

preconstructed model, rather than constructing a model from
the bottom-up.

This method of working was reported to be more support-
ive of design exploration, more efficient, and capable of en-
abling non-designers to explore design possibilities. Unsur-
prisingly, it required new skills and intuition to be used to its
full effect. A lack of knowledge in deriving and applying at-
tribute vectors from latent space limited users’ expressivity
and control over their experiments. Due to this, interpola-
tion was found to be the most intuitive and common method
to arrive at search targets.

Expressing low-level transformations such as positioning
and scale through SpaceSheet often resulted in distorted re-
constructions which did not match the expectations of the
user. This is attributed to a mismatch in the high-level prob-
abilism of sampling latent spaces is an ill-fit to express con-
crete design intent. However, this uncertainty has been re-
ported to be serendipitous when distortions in the recon-
struction added to the aesthetics of the design.

Discussion

SpaceSheets explores the potential of latent spaces to be
used as a tool for design experimentation. The research finds
it to enable a novel method to work with designs which sup-
ports more efficient, high-level design experimentation to
designers and non-designers alike.

User intuition and skill in deriving meaning from latent
spaces is fundamental to conduct design experiments with
a fine level of control. This intuition can be considered
a skill which can be developed through continued experi-
ence with the flexible, low-level interface provided by the
SpaceSheet. Although latent spaces enable designers to ex-
press more meaningful design operations computationally,
it provides redundant uncertainty for low-level design oper-
ations. It is with this understanding that latent spaces are
best considered as a complementary new primitive to build
smarter design tools.
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Appendix: Implementation Details
Supported Operations

Operation Description Formula
Sum Adds a list of numbers / variables SUM(val1, val2, val3, ...)

Minus Subtracts two numbers / variables in se-
quence

MINUS(val1, val2)

Multiply Multiplies a list of numbers / variables MUL(val1, val2, val3, ...)

Linear Interpolation Calculates the value in between two num-
bers / vectors at a specified amount

LERP(from, to, amount)

Average Calculates the average of a list of numbers
/ vectors

AVERAGE(val1, val2, val3,
...)

Distance Calculates the euclidean distance between
two numbers / vectors

DIST(val1, val2)

Modulate Creates a scrubbing interface which can
modulate a cell

MOD(cell, degree, radius)

Random Variable Creates a random latent variable RANDVAR(seed)

Slider Creates a number which is controlled by a
slider element

SLIDER(min, max[, step])

Interactive Cell Types

Figure 10: RANDVAR, MOD and SLIDER cells.

Several alternative cell types have been implemented to create interface elements which support more effective search and
exploration. These are instantiated by the operations:

RANDVAR(seed)

The RANDVAR (random variable) cell instantiates a latent variable from a random seed. This enables users to operate using
latent variables beyond the limited set afforded by the Data Picker. A button displays when the cell is hovered over which
enables users to randomise the cell directly.

MOD(base, degree, distance)

The MOD (modulate) cell exposes a joystick interface which enables users to scrub locally around a given latent variable to
arrive at similar latent variables. The degree of difference can be controlled by the joystick’s distance from the center of the
cell.

SLIDER(min, max [,step])

The slider cell enables users to create a number controlled by a slider element.
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Example Workflows
Interpolation

Figure 11: An interpolation between two latent variables

Extrapolation

Figure 12: Extrapolating from two points.

Extrapolating from latent variables can be used to emphasise attributes which vary between its anchors. In this example, the
difference between the highlighted anchors - blond hair, large smile, etc. - have been emphasised by extrapolating beyond the
end anchor.

Averaging

Figure 13: Calculating the average reconstruction of a group of latent variables
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Analogy

Figure 14: An analogical construction. The bottom right cell applies the difference between the top cells to the cell on the
bottom-left

Given three reconstructions (top-left, top-right, bottom-left), the SpaceSheet calculates the bottom-right corner by analogy.
This is achieved by applying the difference between the top variables to the bottom-left variable. In this example, a toothy grin
has been applied to the man.

Attribute Vectors

Figure 15: Isolating a ‘blonde’ vector by subtraction (left). Adding the attribute vector to a new latent variable (right)

Specific attributes can be applied as operations to latent variables. Attribute vectors can be isolated by subtracting a latent
vector with desired attributes with one without the attributes. This attribute vector can be added to another latent variable to
apply the isolated attribute. The example image shows this two-step process. In the first, a ‘blonde’ attribute vector has been
isolated by computing the difference between the highlighted cells. This vector is then applied in the right image by addition.
The result is a more blonde version of the initial latent variable.
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