
Genetic Programming with Delayed Routing for
Multi-Objective Dynamic Flexible Job Shop

Scheduling

Binzi Xu 7151905016@vip.jiangnan.edu.cn
School of Electrical Engineering, Anhui Polytechnic University, Wuhu, 241000, PR
China
School of IoT and Engineering, Jiangnan University, Wuxi, 214122, PR China
School of Engineering and Computer Science, Victoria University of Wellington,
Wellington 6140, New Zealand

Yi Mei yi.mei@ecs.vuw.ac.nz
School of Engineering and Computer Science, Victoria University of Wellington,
Wellington 6140, New Zealand

Yan Wang wangyan88@jiangnan.edu.cn
School of IoT and Engineering, Jiangnan University, Wuxi, 214122, PR China

Zhicheng Ji zcji@jiangnan.edu.cn
School of IoT and Engineering, Jiangnan University, Wuxi, 214122, PR China

Mengjie Zhang mengjie.zhang@ecs.vuw.ac.nz
School of Engineering and Computer Science, Victoria University of Wellington,
Wellington 6140, New Zealand

Abstract
Dynamic Flexible Job Shop Scheduling (DFJSS) is an important and challenging prob-
lem, and can have multiple conflicting objectives. Genetic Programming Hyper-
Heuristic (GPHH) is a promising approach to fast respond to the dynamic and un-
predictable events in DFJSS. A GPHH algorithm evolves dispatching rules (DRs) that
are used to make decisions during the scheduling process (i.e. the so-called heuristic
template). In DFJSS, there are two kinds of scheduling decisions: the routing decision
that allocates each operation to a machine to process it, and the sequencing decision
that selects the next job to be processed by each idle machine. The traditional heuristic
template makes both routing and sequencing decisions in a non-delay manner, which
may have limitations in handling the dynamic environment. In this paper, we propose
a novel heuristic template that delays the routing decisions rather than making them
immediately. This way, all the decisions can be made under the latest and more accu-
rate information. We propose three different delayed routing strategies, and automat-
ically evolve the rules in the heuristic template by GPHH. We evaluate the newly pro-
posed GPHH with Delayed Routing (GPHH-DR) on a multi-objective DFJSS that op-
timises the energy efficiency and mean tardiness. The experimental results show that
GPHH-DR significantly outperformed the state-of-the-art GPHH methods. We further
demonstrated the efficacy of the proposed heuristic template with delayed routing,
which suggests the importance of delaying the routing decisions.

Keywords
dynamic flexible job shop scheduling, genetic programming, dispatching rule discov-
ery, delayed routing, energy efficiency.

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

Binzi Xu et al.

1 Introduction

In the past decades, lots of attention have been paid on flexible job shop scheduling
(FJSS) (Jain and Meeran, 1999) with the rapid developments of economy and manufac-
turing technologies. In the real manufacturing industries, FJSS aims to process a set of
jobs by a number of machines to optimise some objectives, such as the mean tardiness
and energy efficiency. A good schedule can not only finish all the manufacturing tasks
as soon as possible but also improve the quality of products, reduce the manufacturing
cost and energy consumption. Hence, FJSS is an important problem for manufacturing
industries.

As an NP-hard problem (Garey et al., 1976), FJSS has been extensively studied so
far and many optimisation methods have been proposed to solve it properly. In the
early days, researchers tried to find the optimal solution using exact methods, such
as branch and bound (Brah and Hunsucker, 1991) and constraint programming (Pour
et al., 2018). However, due to the NP-hardness of FJSS, these methods are unable to han-
dle large scale practical problems. In this case, approximated optimisation approaches,
such as genetic algorithm (Jensen, 2003), tabu search (Peng et al., 2015), and particle
swarm optimisation (Karimi-Nasab et al., 2015), have shown promise to solve real-
world FJSS problems.

FJSS can have multiple conflicting objectives. So far the tardiness-related objectives
have been commonly considered (Romero-Silva et al., 2018). However, as sustainabil-
ity is becoming increasingly important (May et al., 2017), energy efficiency is attracting
more and more attention. In this paper, we focus on the multi-objective FJSS that opti-
mises the mean tardiness (Tay and Ho, 2008; Zhang et al., 2018) and energy efficiency
(Jose et al., 2019; Dai et al., 2019; Gahm et al., 2016; Lei et al., 2018), since both objectives
are very important considerations in practice. Mean tardiness is a widely used objective
in the FJSS that directly reflects production efficiency of a scheduling scheme, while en-
ergy efficiency demonstrates the efficiency of power utilisation (i.e. the so-called green
degree of production).

In the real world, the scheduling environment is often dynamic with unpredictable
events (e.g. job arrivals). In Dynamic FJSS (DFJSS), it is important to effectively and
efficiently react to these unknown events (Nguyen et al., 2014; Shen and Yao, 2015).
However, the traditional optimisation approaches, such as mathematical programming
and genetic algorithm, cannot efficiently handle the dynamic environment due to their
high computational cost.

Dispatching rules (DRs) have been shown as a promising heuristic for DFJSS since
they can make effective scheduling decisions in a very short time. DRs essentially are
priority functions that calculate the priority of each scheduling object (e.g. a job in the
candidate operation set or a machine to be allocated) based on the temporal job shop
state. Then, scheduling decisions could be made based on these priorities. Calculating
the priorities based on DRs is very time-efficient. Hence, DRs can satisfy the special
requirement of DFJSS.

There have been a variety of DRs designed manually, such as first-in-first-out
(FIFO), shortest-processing-time (SPT) and other more advanced DRs (Nguyen et al.,
2016). However, the manually designed DRs are hard to capture the complex interac-
tions between the job and machine features in the job shop, and thus their performance
is limited. Designing an effective DR manually requires much domain knowledge and
many rounds of trial-and-error.

Recently, Genetic Programming Hyper-Heuristic (GPHH) has been widely used
to automatically evolve DRs for solving dynamic problems (Hildebrandt and Branke,

2 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

2015), including DFJSS (Zhang et al., 2018; Nguyen et al., 2015). GPHH has also
achieved much better performance than the manually designed DRs for the multi-
objective scheduling problems (Tay and Ho, 2008; Nguyen et al., 2014).

To solve DFJSS with GPHH, there are two kinds of scheduling decisions to be made
(Yska et al., 2018): routing decision and sequencing decision. Making a routing decision
means to allocate a job operation to a candidate machine, while making a sequencing
decision means to select a job operation from the candidate set of an idle machine to
process next.

For developing GPHH for DFJSS, it is critical to design the heuristic template,
which is the framework that the evolved DRs operate in (Burke et al., 2009). The ex-
isting GPHH (Nguyen et al., 2014; Zhang et al., 2018) employed a non-delay-based
heuristic template. In this heuristic template, a routing decision is made as soon as a
job operation becomes ready, and a sequencing decision is made as soon as a machine
becomes idle. However, only the sequencing decision can take effect immediately. Af-
ter the routing decision is made, the job still needs to wait in the candidate set of the
allocated machine until the machine becomes idle and chooses this job to process next.
The environment can change while the job is waiting, making the original allocation
not desirable anymore (another machine becoming much better to process the job in
the updated environment). The issue can be more serious when considering multiple
conflicting objectives simultaneously.

To address the above issue, we propose a delayed routing strategy to postpone the
routing decision to the last minute. In the delayed routing strategy, when a job becomes
ready, it is placed in a pool without being allocated to any candidate machine. Once a
machine becomes idle, it will select a subset of jobs from the pool for the sequencing
decision. This way, we only consider the allocation of a job to the candidate machines
when it can be processed immediately, and both the routing and sequencing decisions
can consider the latest information during the dynamic scheduling process. We pro-
pose a novel heuristic template based on the delayed routing strategy to improve the
performance of GPHH.

Although the delayed routing strategy can handle the dynamic environment bet-
ter, it raises an extra challenge that the pool can consist of a large number of jobs, as
it is essentially the union of all the machines’ candidate sets. For each idle machine,
it is challenging to decide the subset of the jobs for the sequencing decision, and it is
extremely difficult to select the proper job to process next from such a large number
of candidate jobs. To tackle this challenge, we propose three different delayed routing
strategies to smartly select the subset of jobs for the idle machine.

The overall goal of the paper is to develop a novel GPHH algorithm with De-
layed Routing (GPHH-DR) for solving the multi-objective DFJSS more effectively. More
specifically, we have the following research objectives.

• Develop a novel heuristic template, which is a scheduling process with the delayed
routing strategy.

• Propose three different delayed routing strategies to select the subset of ready jobs
for the idle machine to make the sequencing decision.

• Develop the GPHH-DR to evolve the rules used in the novel heuristic template.

• Evaluate the proposed GPHH-DR on multi-objective DFJSS and analyse the
evolved rules.

Evolutionary Computation Volume x, Number x 3

Binzi Xu et al.

The rest of this paper is organised as follows. Section 2 gives the background of this
paper, including a brief description of DFJSS, GPHH, and related work. The proposed
GPHH-DR, including the novel heuristic template and three delayed routing strategies,
is described in Section 3. Section 4 gives the experiment design and Section 5 gives the
results and discussions. The conclusions and future work are shown in Section 6.

2 Background

This section first briefly describes DFJSS, then introduces GPHH, and finally gives the
related work.

2.1 Problem Description

In DFJSS, there are a set of machines M = {M1, . . . ,Mm} in the job shop. Each ma-
chine Mk has a standby power consumption εk, indicating the energy consumption if
machine is idle for one time unit. The jobs J = {J1, . . . , Jn} arrive at the shop floor in
real time. Each job Ji has an arrival time ai and a due date di. A job Ji consists of a
sequence of operations (Oi1, . . . , Oini

), where ni is the number of operations of Ji. Each
operation Oij has a set of candidate machinesMij ⊆M, which contains the machines
that can process Oij . If Oij is processed by machine Mk ∈ Mij , the processing time is
pijk, and the energy consumption is eijk. Let t(Oij) be the start time of Oij and t(Mk, q)
be the start time of the qth operation processed by Mk. The problem is to process the
jobs with the machines subject to the following constraints.

• A job is unseen (i.e. considered in the scheduling process) until it arrives.

• An operation cannot start being processed until its precedent operations have been
completed. The first operation of a job cannot be processed until the job arrives at
the shop floor.

t(Oi1) ≥ ai,∀ i = 1, . . . , n (1)

t(Oij) +

m∑
k=1

pijkxijk ≤ t(Oi,j+1),∀ i = 1, . . . , N, j = 1, . . . , ni − 1 (2)

where the binary decision variable xijk equals 1 if Oij is processed by Mk, and 0
otherwise.

• Each machine can process at most one job operation at a time.

t(Mk, q) +

n∑
i=1

ni∑
j=1

pijkyijkq ≤ t(Mk, q + 1),∀ k = 1, . . . ,m (3)

n∑
i=1

ni∑
j=1

yijkq = 1,∀ k = 1, . . . ,m, q = 1 . . . , Qk (4)

where the binary decision variable yijkq takes 1 ifOij is the qth operation processed
by Mk, and 0 otherwise. Qk is the number of operations processed by Mk. The
constraint (4) means that for each position of each machine, there is exactly one
operation.

4 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

• Each operation must be processed by one of its candidate machines.

m∑
k=1

xijk = 1,∀ i = 1, . . . , n, j = 1, . . . , ni, Mk ∈Mij (5)

m∑
k=1

xijk = 0,∀ i = 1, . . . , n, j = 1, . . . , ni, Mk /∈Mij (6)

Qk∑
q=1

yijkq = xijk,∀ i = 1, . . . , n, j = 1, . . . , ni, k = 1, . . . ,m (7)

t(Oij) =

m∑
k=1

Qk∑
q=1

yijkq · t(Mk, q) (8)

The constraint (7) indicates that if Oij is processed by Mk (i.e. xijk = 1), it must be
processed at some position. The constraint (8) is the matching constraint between
t(Oij) and t(Mk, q).

• Once a machine starts processing an operation, it cannot be interrupted until the
operation is completed.

The DFJSS considers two objective functions: (1) minimising the mean tardiness
(MT), and (2) minimising the ratio of the idle energy consumption (RECidle). The
objective functions are calculated as follows.

min MT =
1

n

n∑
i=1

max {ci − di, 0}, (9)

min RECidle =
ECidle

ECidle +
n∑

i=1

ni∑
j=1

m∑
k=1

eijkxijk

, (10)

where ci is the completion time of the job Ji. The idle energy consumption ECidle is
calculated as

ECidle =

m∑
k=1

cmax −
n∑

i=1

ni∑
j=1

pijkxijk

 εk, (11)

where cmax = maxi={1,...,n} ci is the completion time of the last job.
Equation (10) looks similar to machine utilisation, however these two are differ-

ent. RECidle is calculated as the ratio of effective energy consumption to total energy
consumption (Wang et al., 2013; He et al., 2015). Therefore, this objective is related to
machine utilisation and the choice of idle machines. In addition to keeping machines
busy, the standby power consumption εk also has an impact on energy efficiency. To
improve energy efficiency, it is better to always choose the machine with small εk to be
idle, especially when the production task is not heavy.

It can be seen that the mean tardiness MT depends on the completion time of the
jobs. To minimise MT , the schedule tends to allocate the operations to the machines
with smaller pijk. On the other hand, to minimise ECidle, the routing decision tends to
allocate the operations to the machines with larger εk. Therefore, the two objectives are
potentially conflicting due to the potential conflict between pijk and εk of the machines.

Evolutionary Computation Volume x, Number x 5

Binzi Xu et al.

The scheduling process consists of two kinds of decisions which are both made by
the heuristic template and dispatching rules when using GPHH to generate scheduling
schemes. The routing decision allocates an operation to a candidate operation set of
the candidate machine (i.e. deciding the xijk values) when it becomes ready, and the
sequencing decision selects the next job operation from the candidate operation set of
an idle machine to process next (i.e. deciding the yijkq values). When an operation is
finished by one of its candidate machines, the next operation will become ready if this
finished operation is not the last operation of this job. A typical scheduling process
where the routing and sequencing decisions collaborate with each other is illustrated
in Figure 1.

Ready

jobs/operations Candidate operation set Machines

Routing Sequencing

Jobs arrive

Assign job

information

Completed

jobs

Dynamic flexible job shop

Unfinished jobs

Unfinished jobs

Unfinished jobs

 +

Making scheduling decisions

Heuristic template Dispatching rule

Figure 1: A typical DFJSS process.

2.2 Genetic Programming Hyper-Heuristic

GP (Banzhaf et al., 1998) is a type of evolutionary algorithm that evolves a population
of computer programs. As a hyper-heuristic, GPHH has been successfully applied to
evolve DRs for a variety of complex and dynamic problems (Burke et al., 2009; Nguyen
et al., 2019). The general framework of GPHH is given in Algorithm 1. Unlike tra-
ditional optimisation algorithms, an individual in GPHH is a heuristic rather than a
solution. To evaluate a heuristic during GPHH (line 3), a heuristic template is required.

Algorithm 1: The general framework of GPHH

1 Randomly initialise a population of DRs;
2 while stopping criteria not met do
3 Evaluate the DRs in the population;
4 Generate a new population using elitism, crossover, mutation and

reproduction operators;
5 end
6 return the best heuristic;

A heuristic template is essentially an execution engine/simulator that makes

6 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

scheduling decisions and generates schedules (Burke et al., 2009). Given a problem
instance and a heuristic, the heuristic template generates the corresponding solution to
the problem instance. In GPHH, the fitness of a heuristic is normally defined as the
average quality of the solutions generated by the heuristic on a set of training problem
instances.

To represent a heuristic, the tree-based representation is commonly used. Specifi-
cally, a heuristic is represented as a tree in the simulation system, which is essentially a
priority function. At each decision situation, the heuristic calculates the priority value
of each candidate action (e.g. selecting the next job operation from the candidate oper-
ation set of an idle machine to process next), and takes the most prior action. Figure 2
shows two widely used manually designed routing and sequencing rules (Tay and Ho,
2008; Holthaus and Rajendran, 2000) as examples, where the terminals are the job shop
features (e.g. WIQ stands for the total processing time of the operations waiting in the
current machine’s candidate operation set). The routing rule always chooses the ma-
chine with the least waiting time for routing while the sequencing rule chooses the job
with minimal processing time for sequencing. GPHH typically uses the standard GP
crossover and mutation operators such as the tree-swap crossover and tree-replacement
mutation operators to generate new individuals.

(a) routing dispatching rule (b) sequencing dispatching rule

 WIQ-MWT+PT 2PT+WIQ+NPT

+

- PT

WIQ MWT

+

+

PT PT

+

WIQ NPT

Figure 2: An example of the routing and sequencing rules for DFJSS.

For solving DFJSS with GPHH, the fitness of each individual (i.e. DR) is defined
based on a set of training DFJSS instances. For each instance, the heuristic template,
which is essentially the scheduling simulator, uses the DRs to make the routing and
sequencing decisions at each decision situation during the simulation, and generates
the schedule for the instance as shown in Figure 1. Then, during GPHH, the fitness of
a DR is normally defined as the average objective value of the solutions generated on
the training instances.

Based on the description by Burke et al. (2009), the development of GPHH consists
of the following two key steps.

1. Develop an effective heuristic template that uses DRs to generate solutions.

2. Design the GP algorithm (e.g. representation, terminal and function sets, search
mechanism) to evolve the heuristic.

Both steps are critical to the performance of GPHH. In this paper, we focus on improv-
ing the heuristic template by proposing three different delayed routing strategies.

Evolutionary Computation Volume x, Number x 7

Binzi Xu et al.

2.3 Related Work

This section gives a literature review on recent related work. We firstly describe the
different objectives considered in FJSS (e.g. mean tardiness, energy efficiency, etc.).
Then, we introduce approaches for the dynamic FJSS, including non-DR and DR-based
approaches. Finally, researches on GPHH for DFJSS are described, and their limitations
are stated to motivate the study in this paper.

2.3.1 Different Objectives in FJSS

FJSS is one of the most famous problems in the field of optimisation, which is a static
combinatorial optimisation problem that all jobs and related information are known
at the very beginning (Nguyen et al., 2019). During the development of FJSS, many
objectives have been considered.

As a practical issue, time related objectives are commonly used in the FJSS, in-
cluding makespan (Wu and Sun, 2018; Gao and Pan, 2016; Zandieh et al., 2017), mean
tardiness (Tay and Ho, 2008), and total flow time (Gao et al., 2018). These time re-
lated objectives are closely related to production efficiency, which is the top priority
of manufacturing industries. These objectives highly depend on the choice of process-
ing machines, and can effectively reflect the difference and performance of scheduling
solutions. Considering the real situation, uncertainty (e.g. fuzzy processing time and
fuzzy due date time) has also been introduced and made the FJSS more difficult in
which the objectives are fuzzy makespan (Sun et al., 2019; Gao et al., 2016), fuzzy tardi-
ness (Niroomand et al., 2016), etc. There are two main kinds of models to describe the
uncertain number (Sun et al., 2019): fuzzy interval and fuzzy number. This uncertainty
has extended the traditional FJSS to fuzzy FJSS in which the operators of optimisation
algorithms should be improved (Lin, 2019).

Other manufacture related objectives are also considered in the previous work,
such as production cost (Wang et al., 2018a), total energy cost (TEC) (Mokhtari and
Hasani, 2017; Meng et al., 2019; Wang et al., 2018b), energy efficiency (Tang et al.,
2016), and workload (Zhu and Zhou, 2020). Energy related objectives have attracted
increasing attention recently because of the trend of green manufacturing and sustain-
able manufacturing (Gahm et al., 2016).

There are two main directions for energy efficiency oriented scheduling: (1) al-
gorithm improvement, and (2) energy-efficiency specified methods. The former treats
energy related objectives as normal objectives, and focuses on improving the perfor-
mance of optimisation algorithms (Lei et al., 2018; Dai et al., 2019; Zhang and Chiong,
2016; Wang et al., 2018a; Rubaiee and Yildirim, 2019). The latter considers the complex
characteristics of the energy consumption in the scheduling problem, and introduces
some specific situations and requirements into the problem, e.g., turn off/turn on strat-
egy (Liu et al., 2016; Wu and Sun, 2018) and speed level selection of machines (Meng
et al., 2019; Salido et al., 2016). As pointed out by Zhang et al. (2016), processing plan-
ning also impacts the energy efficiency of scheduling.

It is obvious that most studies on energy efficiency oriented scheduling are solved
by heuristic algorithms. The main drawback of heuristic algorithms is that the solu-
tions they generated are not reusable, which means it is hard for them to deal with
the dynamic environment (i.e. the unpredictable events). This is the reason why we
consider to evolve DRs by GPHH in this paper.

8 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

2.3.2 Optimisation Approaches for Dynamic FJSS

Dynamic flexible JSS (DFJSS) is a more practical version of FJSS that considers dynamic
and unpredictable events, which include random job arrivals, machine breakdowns,
etc. In the DFJSS, information about a job is only available when this job arrives. Cur-
rently, there are two main directions on solving DFJSS: non-DR (e.g. heuristic algo-
rithms) and DR-based approaches.

Heuristic algorithms are widely used non-DR based approaches that have already
shown their advantages on solving FJSS. When it comes to DFJSS, using heuristic
algorithm based rescheduling mechanisms (Ouelhadj and Petrovic, 2009) is a com-
mon way for heuristic algorithms to handle the dynamic environment of DFJSS, in-
cluding completely reactive (Nie et al., 2013), predictive-reactive (Shen and Yao, 2015;
Shahgholi Zadeh et al., 2019; Shoraneh and Kazuhiro, 2019) and pro-active schedul-
ing (Mokhtari and Dadgar, 2015). Among them, predictive–reactive scheduling is the
most popular method that can get a balance between computing time and scheduling
performance.

Heuristic algorithms with rescheduling mechanism have two main problems on
reacting dynamic and stochastic manufacturing circumstances. First, the stability is
a key measure for rescheduling, which not only influences the implementation of
rescheduling, but also has impacts on the practical optimisation objectives. Second,
the high computational complexity of the heuristic algorithm makes it hard to obtain a
suitable rescheduling solution within a limited time. Although many efforts have been
done to reduce the difficulty of rescheduling (e.g. partial rescheduling method), they
may make the overall scheduling solution less effective.

On the other hand, the capability of fast responding to dynamic and unknown
changes in the DJSSP makes DR-based approaches more and more popular these days.
As a priority function, DRs can make scheduling decisions in a very short time and
generate a feasible scheduling solution consequently as they do not have the process of
iterative improvement during scheduling. Another key advantage of DRs is that they
can be applied to different job shops with little extra effort.

There are three categories of DRs in the literature. The research of DRs started
from simple DRs (Panwalkar and Iskander, 1977), such as FIFO, SPT, EDD (Earliest
Due Date), etc. These simple DRs only consider information of jobs (e.g. processing
time and due date). Because of their simplicity and poor performance, combinations
of simple DRs have been developed, which take different processing cases and situ-
ations into consideration, and select specific DR to make scheduling decisions (Vep-
salainen and Morton, 1987), such as FIFO/SI, FCFS*S, 2CLASS. The third stage/type is
weighted priority indexes, in which more different information and processing states
are considered.

However, it is hard to manually design a good DR because of the requirement of
vast domain knowledge and deep understanding of the changing processing environ-
ment. Therefore, automated design of DRs with hyper-heuristics (HH) has been shown
as an effective approach compared with manually designed DRs (Li et al., 2013; Tay
and Ho, 2008; Nguyen et al., 2013a, 2019). Instead of searching in the solution search
space, hyper-heuristic algorithms aim to find a heuristic, i.e. DR in this context, in the
heuristic search space.

2.3.3 GPHH Methods for DFJSS

In the field of HH algorithms, there are two main methods: HH for heuristic selection
and HH for the heuristic generation. Heuristic selection (Huang and Süer, 2015) aims

Evolutionary Computation Volume x, Number x 9

Binzi Xu et al.

to design a decision making strategy to select existing DRs according to the current
system state. On the other hand, the heuristic generation tries to design a new DR
automatically based on given terminal set (Branke et al., 2016).

GPHH is a popular HH approach and has been widely used in many applications
because of its flexible representation and excellent search ability. Existing works have
used GPHH to automatically generate mutation operators (Hong et al., 2018), optimise
the running time of software (Langdon and Harman, 2015), generate the motion feature
descriptor in a feature extraction method and design diverse classifiers with selected
features (Nag and Pal, 2016). According to the previous work, GPHH can not only
solve optimisation problems, but also be embedded in the other search approaches to
improve their performance.

GPHH is also a promising approach for scheduling problems, especially DFJSS.
Nguyen et al. (Nguyen et al., 2018) made much efforts on using GPHH to solve JSSP.
They tested three kinds of representations of DRs and found that the mixed represen-
tation performed the best (Nguyen et al., 2013a). Besides, they used GPHH to solve
dynamic multi-objective JSS based on cooperative co-evolution (Nguyen et al., 2014).
Iterative dispatching rules (IDRs) (Nguyen et al., 2013b), surrogate assisted method
(Nguyen et al., 2017) and iterated local search-based GPHH (Nguyen et al., 2015) are
also proposed to improve the performance of the evolved DRs from different aspects.
Besides, combination schemes (Park et al., 2018), multi-tree representation (Zhang et al.,
2018), terminal selection (Mei et al., 2017), hybrid algorithms (Pickardt et al., 2013) and
heuristic template (Durasević et al., 2016; Durasević and Jakobović, 2018) are also key
factors that influence the performance of GPHH. Among them, Durasević et al. (2016)
firstly proposed the basic idea of delayed routing strategy but only focused on the prob-
lem with unrelated machines.

Most GPHH methods adopted the same heuristic template which deals with rout-
ing decision and sequencing decision separately. The routing decision is made and
the job is assigned to the candidate operation set of this selected machine immediately
when a job is ready. However, the assigned machine may still be busy, and the job has
to wait to be processed until the machine becomes idle again. In other words, there
may be a time gap between the routing decision and the actual start time of the job
processing. The environment can change during this time gap, making the previously
made routing decision less effective.

To address the above issue, this paper proposes a GPHH-DR with a novel heuristic
template considering delayed routing strategies for solving DFJSS. The delayed routing
strategies change the way to make scheduling decisions. More specifically, the routing
decision is not made immediately after a job operation becomes ready. Instead, it is
made at the moment when a sequencing decision needs to be made. If this operation is
not chosen this time, its routing decision can be remade again when the next sequenc-
ing decision is about to be made. This novel heuristic template ensures that the routing
decision always be made with the latest job shop state and the previous routing deci-
sions can be changed as long as the operation has not been processed yet. These two
advantages make the proposed GPHH-DR more suitable for the dynamic environment
in DFJSS.

3 GPHH with Delayed Routing

The proposed GPHH-DR is based on a novel heuristic template, which employs the
delayed routing. The tree-based representation and evolutionary operators of GPHH-
DR are the same as the standard GPHH for DFJSS.

10 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

3.1 The Novel Heuristic Template with Delayed Routing Strategy

Figure 3 gives a brief illustration of the framework of the proposed heuristic template
with delayed routing strategies, in which the main contribution and improvement of
this proposed heuristic template are highlighted by red boxes. In this novel heuristic
template, a ready job is sent to a pool rather than immediately sent to one of the can-
didate machines’ candidate operation sets by a routing rule. When a machine becomes
idle, the delayed routing policy is used to form a candidate operation set for this idle
machine. Then, a sequencing rule is used to select a job from this candidate operation
set to process next.

Proposed heuristic

template for

scheduling decision

making

· DFJSS instance

· Dispatching rule

Feasible schedule

in
p

u
t

o
u
tp

u
t

Time

When a

job/operation

is ready

Schedule generating process Heuristic template: scheduling decision making process

· Do not make the routing decision currently,

unless there exists an idle candidate machine.

· Put the ready job into the pool directly.

When a

machine

becomes idle
Time gap

· Form a candidate operation set (OperationSetk) for

sequencing decision.

 Naive delayed routing strategy

 Sequential delayed routing strategy

 Parallel delayed routing strategy

· Select the next operation from this set by sequencing rule.

· Process the selected operation immediately

DelayedRouting(·)

(make routing decision)

Figure 3: Framework of the proposed heuristic template with delayed routing strategy.

Algorithm 2 shows more details about the proposed heuristic template with de-
layed routing strategy. Initially, all the machines are idle and all the operations are not
completed. Then, at each step, the algorithm identifies the earliest time when there ex-
ists operation that are ready to be processed (e.g. a new job arrives, or an operation is
completed and its successive operation becomes ready), and there are idle machines to
process these ready operations. Then, for each idle machine at that moment, it selects
a subset of ready operations to form its candidate operation set (batch delayed routing),
and further selects the next operation from the candidate operation set to be processed
next (sequencing).

The main difference between the newly proposed heuristic template and the tra-
ditional heuristic template is that in the newly proposed heuristic template, when an
operation becomes ready, it is not allocated to any machine’s candidate operation set
immediately. Instead, the candidate operation set of an idle machine is formed by se-
lecting from all the ready operations before making the sequencing decision (line 6).
The formation of OperationSetk involves a number of delayed routing decisions, i.e.
whether each ready operation should be allocated to the idle machine or not.

3.2 Delayed Routing Strategy

A key issue in GPHH-DR is how to effectively make a number of delayed routing de-
cisions simultaneously (line 6 of Algorithm 2), which leads to the candidate operation
set OperationSetk of the idle machine Mk. Note that the delayed routing strategy has
the following differences from the routing rule.

• A routing rule is to allocate a ready operation to a candidate machine (add an op-
eration to an existing candidate operation set), while the delayed routing strategy
is to form the entire candidate operation set of an idle machine for the sequencing
decision.

Evolutionary Computation Volume x, Number x 11

Binzi Xu et al.

Algorithm 2: The proposed heuristic template with delayed routing strategy
Input: A DFJSS instance and a dispatching rule (single-tree or multi-tree).
Output: A feasible schedule.

1 All machines are idle, all operations are not completed, schedule is empty;
2 while there are operations not completed do
3 Go to the earliest time t when there exist ready operations and there are

idle machines to process them;
4 Get all the ready operations O(t) and the idle machinesM(t) at time t;
5 foreach Mk ∈M(t) do

// Make the delayed routing decisions simultaneously

6 OperationSetk = DelayedRouting(O(t),Mk);
// Make the sequencing decision

7 Select the next operation from OperationSetk by the sequencing rule;
8 Process the next operation by Mk, and add the processing to the

schedule;
9 end

10 end
11 return the schedule;

• After applying a routing rule, the ready operation is physically allocated to a can-
didate machine, and can no longer be changed. On the contrary, the ”candidate
operation set” formed by the delayed routing strategy is not physical. If an op-
eration was placed into the candidate operation set of an idle machine but not
selected for processing next by the sequencing rule, it can also be selected to form
the candidate operation set of another idle machine later on.

In this paper, we propose three different delayed routing strategies to form the can-
didate operation set of an idle machine, namely (1) naive, (2) sequential and (3) parallel.

3.2.1 Naive Delayed Routing Strategy

In the naive delayed routing strategy, the DelayedRouting(·) function forms
OperationSetk by simply selecting all the ready operations that can be processed by
Mk. It is called “naive” since it does not consider any state feature except the candidate
machine set of each ready operation. The pseudo code of the naive delayed routing
policy is given by Algorithm 3.

Algorithm 3: The naive delayed routing strategy

Input: The ready operations O(t), the machine Mk.
Output: The candidate operation set of Mk for sequencing.

1 OperationSetk = ∅;
2 foreach Oij ∈ O(t) do
3 if Mk ∈Mij then OperationSetk = OperationSetk ∪ {Oij};
4 end
5 return OperationSetk;

12 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

3.2.2 Sequential Delayed Routing Strategy
The sequential delayed routing strategy uses a routing rule to form the candidate op-
eration set of the idle machines based on the current job shop state. It is expected to
form better candidate operation sets than the naive strategy by considering more state
features. The pseudo code of the sequential delayed routing strategy is given in Algo-
rithm 4. Initially, the candidate operation set of all the machines are set to empty, and
the ready operations are sorted by their ready time, so that if an operation becomes
ready earlier, its routing decision is made first. The job shop state is cloned to make
sure it is not changed by forming the candidate operation set. Then, each ready oper-
ation is allocated to a machine by the routing rule, and the cloned job shop state S is
updated accordingly. Finally, the candidate operation set of Mk is returned.

Algorithm 4: The sequential delayed routing strategy

Input: The ready operations O(t), the machine Mk, current job shop state S(t).
Output: The candidate operation set of Mk for sequencing.

1 Set the candidate operation set of each machine as empty;
2 Sort the operations in O(t) by ready time;
3 Clone the current job shop state S = S(t);
4 foreach Oij ∈ O(t) do
5 Select the machine M for Oij by the routing rule based on the job shop

state S;
6 Add Oij into the candidate operation set of M ;
7 Update the cloned job shop state S;
8 end
9 return the candidate operation set of Mk;

The sequential delayed routing strategy is expected to consider more global infor-
mation including the state of all the ready operations and all the machines. It is similar
to the existing routing strategy (Yska et al., 2018; Zhang et al., 2018) but different in the
following aspects.

• The sequential delayed routing strategy makes routing decisions using the latest
information, which is more accurate.

• The sequential delayed routing strategy clones the job shop state and updates the
cloned state. This way, an operation is not physically allocated to a machine’s
candidate operation set, and the routing decisions can still be changed later on.

Note that at a decision point t, there can be multiple idle machines. The sequential
delayed routing strategy makes the sequencing decisions for the idle machines in a
sequential manner (hence it is named ”sequential”). The candidate operation set of an
idle machine depends on the sequencing decisions made by the previous idle machines.

3.2.3 Parallel Delayed Routing Strategy
Note that in Algorithm 4, one can obtain the candidate operation set of all the machines,
including all the idle machines. Therefore, one can make the routing decisions for the
idle machines in a parallel way by calculating the candidate operation sets only once.
The pseudo code of the parallel delayed routing strategy is described in Algorithm 5.

Evolutionary Computation Volume x, Number x 13

Binzi Xu et al.

Algorithm 5: The parallel delayed routing strategy

Input: The ready operations O(t), the machine Mk, current job shop state S(t).
Output: The candidate operation set of Mk for sequencing.

1 if Mk is the first idle machine ofM(t) then
2 Calculate the candidate operation set of all the machines by Algorithm 4

and store them globally;
3 return the candidate operation set of Mk;
4 else
5 return the candidate operation set of Mk obtained from the global storage;
6 end

The parallel delayed routing strategy is potentially more efficient than the sequen-
tial one, as it calculates the candidate operation sets only once. In addition, the se-
quencing decisions of the idle machines are independent of each other, and can be
easily parallelised.

3.3 Overall Framework of GPHH-DR

The overall framework of GPHH-DR is given in Algorithm 6. It is a standard GPHH
with the heuristic template with delayed routing (Algorithm 2) for fitness evaluation.
To solve the multi-objective DFJSS, it uses the NSGA-II selection scheme to select the
population.

Algorithm 6: The overall framework of GPHH-DR for Multi-Objective DFJSS
Input: A set of training DFJSS instances.
Output: A set of non-dominated individuals.

1 Randomly initialise a population of individuals;
2 while stopping criteria not met do

// Evaluation
3 foreach ind ∈ population do
4 Generate a schedule by applying this individual in Algorithm 2 on

each training instance;
5 Calculate the MT and RECidle of the schedules by Eqs. (9) and (10);
6 Calculate F1(indi) and F2(indi) as the mean of the MT and RECidle

values, respectively;
7 end
8 Calculate the non-dominated sorting and crowding distance (Deb et al.,

2002) based on individuals’ fitness.;
9 Generate a new population using crossover, mutation and reproduction

operators and the parents are selected based on the non-dominated
sorting and crowding distance;

10 end
11 return the final non-dominated individuals;

There are three versions of GPHH-DR, depending on the delayed routing strat-
egy used in the heuristic template. They have different individual representations as
follows.

14 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

• GPHH-DR-N uses the naive delayed routing strategy. An individual in GPHH-
DR-N is a single tree representing the sequencing rule, as no routing rule is re-
quired.

• GPHH-DR-S adopts the sequential delayed routing strategy. An individual in
GPHH-DR-S is represented as two trees. The first tree represents the routing rule,
and the second being the sequencing rule.

• GPHH-DR-P uses the parallel delayed routing strategy. An individual in GPHH-
DR-P is the same as that in GPHH-DR-S, with one tree representing the routing
rule, and the other the sequencing rule.

In GPHH-DR-N, we use the standard crossover and mutation operators for the
single tree. In GPHH-DR-S and GPHH-DR-P, we use the multi-tree crossover and mu-
tation operators proposed by Zhang et al. (2018).

3.4 Relationship Between Active Schedules and GPHH-DR

Active schedules with DR is also a well-known scheduling method, in which a non-
delay factor α is required. This non-delay factor reflects the look-ahead ability of the
heuristics, thus the determination of α is important for active schedules.

Different from active schedules, GPHH-DR is a parameter-free algorithm that there
is no need for GPHH-DR to decide the non-delay factor α. Furthermore, in GPHH-DR,
only the routing decision is delayed, but no job operation is allowed to be delayed if
there is an idle machine. That is to say, the schedules generated by GPHH are non-delay
schedules.

4 Experiment Design

To evaluate the proposed GPHH-DR, we empirically compare the three versions of
GPHH-DR with the current state-of-the-art algorithms on a range of multi-objective
DFJSS scenarios. Specifically, the following existing algorithms are included in the com-
parisons.

• GPHH-LWT (Tay and Ho, 2008) employs the heuristic template with immediate
routing. It uses the Least Waiting Time as the routing rule and evolves the se-
quencing rule. It is the baseline GPHH for DFJSS.

• GPHH-MT (Zhang et al., 2018) employs the heuristic template with immediate
routing. It uses the Multi-Tree representation to evolve the routing and sequenc-
ing rules simultaneously. It is the current state-of-the-art GPHH with immediate
routing.

• GPHH-UM (Durasević et al., 2016) employs the heuristic template with delayed
routing. It was proposed for solving JSS with Unrelated Machines. It evolves a
single rule for both routing and sequencing. It is the only existing GPHH with
delayed routing.

This section gives details about experiment design, including the simulation model,
parameter setting of the compared algorithms and the performance measures.

Evolutionary Computation Volume x, Number x 15

Binzi Xu et al.

4.1 DFJSS Simulation Model

The configuration of the DFJSS simulation model used in this paper is shown in Table 1.
It has been commonly used in existing studies (Hildebrandt and Branke, 2015; Zhang
et al., 2018; Yska et al., 2018). Note that in DFJSS, an operation can be processed by
multiple machines. We assume that the processing time and energy consumption of
the same operation by different machines are correlated with each other. Therefore, for
each operation Oij , we first randomly sample a mean processing time p̄ij and a mean
energy consumption ēij from the uniform distribution U(1, 99), and then sample the
processing time pijk and energy consumption eijk for each machine from the normal
distributions, i.e. pijk ∼ N(p̄ij , p̄ij/10) and eijk ∼ N(ēij , ēij/10). The standby power
consumption of the 10 machines are sampled from a wide range, so that the RECidle

can be more sensitive to the schedule.

Table 1: Dynamic simulation configuration
Parameter Value
Number of machines m 10
Number of arrived jobs n 5000
Number of warm-up jobs 1000
Number of operations per job discrete U (1, 10)
Available machines per operation discrete U (1, 10)
Job arrival process Poisson process
Utilisation level σ 0.85, 0.95
Due date factor τ 2, 4, 6
Mean processing time p̄ij discrete U (1, 99)
Mean energy consumption ēij discrete U (1, 99)
Standby power consumption εk {10, 12.5, 4.5, 3.6, 7.0, 1.5, 8.5, 2.2, 22.9, 6.4}

In the simulation model, the inter-arrival time of jobs follows the exponential dis-
tribution, and its rate parameter λ is calculated as (Rajendran and Holthaus, 1999)

λ =
0.5(nlow + nup)× 0.5(plow + pup)

σ ×m
(12)

where nlow and nup are lower and upper bound of the number of operations respec-
tively, plow and pup are lower and upper bound of the processing time, σ is the utilisa-
tion level and m is the number of machines.

The two utilisation levels and three due date factors lead to 2 × 3 = 6 scenarios
denoted as ”〈utilisation level-due date factor〉”. For each scenario, 50 simulations are
sampled independently to form the test set. During the training process, one simulation
is used for fitness evaluation. To reduce overfitting, the training simulation is changed
in each generation (Hildebrandt et al., 2010).

A simulation normally stops after the first 5000 arrived jobs have been completed.
However, due to the application of random rules, such stopping criteria may never be
reached, and some jobs can be in the candidate operation set forever. To address this
issue, we stop the simulation if (1) the size of any machine’s candidate operation set is
larger than 100, or (2) more than 7500 jobs have arrived. If the simulation is stopped
under the above criteria, we set a very poor fitness of the evaluated individual.

4.2 Parameter Setting

Table 2 shows the parameter setting of algorithms. The terminal set, which has been
commonly used in the previous studies (Nguyen et al., 2019; Zhang et al., 2018; Li

16 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

et al., 2013), is given in Table 3. The function set is set to {+,−, ∗, /,min,max}, where
the division returns 1 if divided by zero. The common terminals are used by all the
compared algorithms. Note that GPHH-DR-N uses 7 additional terminals than GPHH-
DR-S and GPHH-DR-P. This is because GPHH-DR-N uses a single rule to make both
the routing and sequencing decisions. Unlike GPHH-DR-S and GPHH-DR-P, which
use a separate routing rule to calculate the priority of each machine for each candidate
operation, GPHH-DR-N only applies the single rule to the idle machine. Therefore, it
requires additional information about other machines to calculate the priority of the
candidate operations. The 7 additional terminals were designed to reflect the relative
priority of the other machines to the idle machine from different aspects.

Table 2: Parameter setting of algorithms.
Parameter Value
Initialisation Ramped half-and-half
Population size 1024
Maximal depth 8
Crossover rates 80%
Mutation rates 15%
Reproduction rates 5%
Parent selection Tournament selection with size 7
Elitism 10 best individuals
Number of generations 51

Table 3: The terminal set of the GPHH approaches.
Algorithm Terminal Description

Common

PT Processing time of operation Oij on the machine Mk

EC Energy consumption of operation Oij on the machine Mk

SL Slack of the job Ji = di - t - WKR
OWT Waiting time of operation Oij since ready
NPT Average processing time of the next operation
NEC Average energy consumption of the next operation
WKR Work remaining of the job Ji
ECR Remaining energy consumption of the job Ji
NOR Number of remaining operations of the job Ji
TIS Time of the job Ji in the job shop
WIQ Workload in the candidate operation set of machine Mk

EIQ Total energy consumption in the candidate operation set
NIQ Number of operations in the candidate operation set
MP The standby power consumption of the machine
NOS Number of candidate machines of the operation
MWT Machine waiting time

GPHH-DR-N

rPT Relative processing time = pijkidle - min{pijk |Mk ∈Mij }
rEC Relative energy consumption
rWIQ Relative workload in the candidate operation set
rEIQ Relative energy consumption in the candidate operation set
rNIQ Relative number of operations in the candidate operation set
rMWT Relative machine waiting time
rMP Relative standby power consumption

4.3 Performance Measures

The Hyper-Volume (HV) and Inverted Generational Distance (IGD), which are the two
commonly used performance measures for multi-objective optimization, are adopted

Evolutionary Computation Volume x, Number x 17

Binzi Xu et al.

in this paper. A higher HV value and a lower IGD value indicate a better performance
of the algorithm. HV requires a reference point, and IGD relies on the true Pareto front.
Since the true Pareto front is unknown in our problem, we combine the results of all
the runs of all the compared algorithms and obtain the non-dominated solutions to
approximate the Pareto front.

In our experiments, we first normalise the two objectives into the range [0, 1]. Then,
we calculate IGD based on the approximated Pareto front, and HV with the reference
point 1 + 1/(nAPF − 1) (Ishibuchi et al., 2017), where nAPF is the number of points in
the approximated Pareto front.

5 Results and Discussions

5.1 Overall Performance

Tables 4 and 5 show the mean and standard deviation of the HV and IGD values of the
30 independent runs of the compared algorithms on the tested six DFJSS scenarios.

Table 4: The mean and standard deviation of the HV values over the 30 independent
runs of the compared algorithms.
Scenario GP-LWT GP-MT GP-UM GP-DR-N GP-DR-P GP-DR-S
〈0.85 -2〉 0.068(0.021) 0.920(0.016) 0.132(0.020) 0.222(0.020) 0.934(0.016) 0.928(0.014)
〈0.85 -4〉 0.070(0.043) 0.986(0.024) 0.136(0.039) 0.231(0.035) 0.994(0.024) 0.994(0.011)
〈0.85 -6〉 0.089(0.061) 1.032(0.012) 0.155(0.056) 0.253(0.051) 1.034(0.021) 1.025(0.022)
〈0.95 -2〉 0.179(0.038) 0.925(0.029) 0.414(0.084) 0.707(0.043) 0.945(0.028) 0.936(0.025)
〈0.95 -4〉 0.236(0.061) 0.999(0.012) 0.479(0.067) 0.853(0.027) 1.013(0.011) 1.004(0.010)
〈0.95 -6〉 0.213(0.112) 1.036(0.017) 0.485(0.112) 0.911(0.039) 1.047(0.015) 1.041(0.015)

Table 5: The mean and standard deviation of the IGD values over the 30 independent
runs of the compared algorithms.
Scenario GP-LWT GP-MT GP-UM GP-DR-N GP-DR-P GP-DR-S
〈0.85 -2〉 0.651(0.036) 0.014(0.009) 0.592(0.036) 0.500(0.033) 0.009(0.006) 0.010(0.007)
〈0.85 -4〉 0.778(0.042) 0.024(0.022) 0.716(0.036) 0.624(0.034) 0.020(0.016) 0.017(0.009)
〈0.85 -6〉 0.822(0.077) 0.025(0.013) 0.760(0.071) 0.669(0.062) 0.028(0.024) 0.038(0.034)
〈0.95 -2〉 0.537(0.030) 0.019(0.009) 0.350(0.056) 0.143(0.025) 0.012(0.009) 0.012(0.005)
〈0.95 -4〉 0.575(0.059) 0.023(0.009) 0.373(0.057) 0.098(0.020) 0.011(0.005) 0.016(0.010)
〈0.95 -6〉 0.697(0.099) 0.026(0.016) 0.460(0.086) 0.086(0.017) 0.021(0.012) 0.026(0.016)

From the tables, one can see among the three GPHH-DR versions, GPHH-DR-P
and GPHH-DR-S performed much better than GPHH-DR-N. They have much higher
HV values and much lower IGD values. This is as expected since GPHH-DR-N uses
a naive delayed routing strategy that does not consider how to allocate the ready op-
erations into different machines. On the other hand, GPHH-DR-P and GPHH-DR-S
make the delayed routing decisions by a routing rule, which can provide much better
candidate operation sets for the sequencing rule.

Among the existing algorithms, GPHH-MT performed the best, which was much
better than GPHH-LWT and GPHH-UM. This is also consistent with our expectations.
First, it has been demonstrated in existing works (Zhang et al., 2018; Yska et al., 2018)
that co-evolving the routing and sequencing rules can lead to much better results than
fixing the routing rule (i.e. GPHH-LWT). GPHH-MT outperformed GPHH-LWT since
it co-evolves the routing and sequencing rule. Second, although GPHH-UM adopts the

18 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

delayed routing rather than immediate routing, it uses a single rule for both routing
and sequencing. Due to the different underlying mechanisms of the two kinds of de-
cisions, it is hardly possible to have a single rule that can capture useful information
for both routing and sequencing. From the above observations, we can see that the
best-performing algorithms use separate rules for routing and sequencing respectively,
either with immediate (GPHH-MT) or delayed routing (GPHH-DR-P and GPHH-DR-
S).

Then, to verify the effectiveness of the proposed GPHH-DR, we compare GPHH-
DR-P and GPHH-DR-S with GPHH-MT. Under the Wilcoxon’s rank sum test with
significance level of 0.05, if GPHH-DR or GPHH-MT is significantly better than the
other compared algorithm, then the corresponding entry is marked in bold. From the
tables, one can see that GPHH-DR-P and GPHH-DR-S outperformed GPHH-MT in
most cases, and no worse than GPHH-MT in all the scenarios. GPHH-DR-P performed
slightly better than GPHH-DR-S. In terms of HV, GPHH-DR-P significantly outper-
formed GPHH-MT in 4 scenarios. In terms of IGD, GPHH-DR-P was significantly bet-
ter than GPHH-MT in 3 scenarios.

Figure 4 shows the final non-dominated solutions in the combined set of the 30
runs of the compared algorithms, which is an indicator of the best performance. From
Figure 4, we can see that as the due date factor increases (e.g. from 〈0.85-2〉 to 〈0.85-
6〉), the mean tardiness obtained by the algorithms tend to decrease, and the energy
efficiency stays in the same range. This is because energy efficiency is independent of
the due date factor. As the utilisation level increases (e.g. from 〈0.85-2〉 to 〈0.95-2〉),
the mean tardiness of the algorithms tend to increase, and the ratio of idle energy con-
sumption tends to decrease (the energy efficiency is better). This is because a higher
utilisation level leads to a busier status of the machines, and thus a higher energy effi-
ciency.

For all the scenarios, GPHH-LWT, GPHH-UM, and GPHH-DR-N showed obvi-
ous disadvantages in optimising the energy efficiency (the y-axis), although they were
able to achieve almost the same mean tardiness as the other algorithms. GPHH-LWT
performed the worst in terms of energy efficiency, since it uses the manually designed
LWT routing rule, which does not consider the energy efficiency at all. GPHH-UM and
GPHH-DR-N use a single rule, and thus are weaker in making decisions than GPHH-
MT, GPHH-DR-P, and GPHH-DR-S, which use two rules for routing and sequencing
respectively. The reason why all the algorithms reached almost the same best mean tar-
diness (which is nearly zero) is that it is easier to minimise the mean tardiness, e.g. by
allocating the operations to the machine with minimal processing time. The best perfor-
mance of GPHH-MT, GPHH-DR-P, and GPHH-DR-S are similar to each other. When
we zoom in to some specific overlapping regions, we can see some slight difference,
where GPHH-DR-P and GPHH-DR-S obtained slightly better solutions than GPHH-
MT. The main advantage of GPHH-DR-P and GPHH-DR-S over GPHH-MT was that
they can reach more extreme points with a smaller ratio of idle energy consumption
(and larger mean tardiness).

Table 6 shows the average tree size for GPHH-MT, GPHH-DR-P, and GPHH-DR-S
in each scenario. We can see that these three algorithms obtained a very similar size of
the routing rule and sequencing rule, which is much smaller than the full tree size un-
der the maximal depth of 8 (28−1 = 255). This implies that the change from immediate
routing to delayed routing in the heuristic template does not change the complexity of
the decision making.

Evolutionary Computation Volume x, Number x 19

Binzi Xu et al.

Figure 4: Combined non-dominate set of each algorithm in the six scenarios.

Table 6: The average tree size for three algorithms in each scenario
Rule type Algorithms 〈0.85 -2〉 〈0.85 -4〉 〈0.85 -6〉 〈0.95 -2〉 〈0.95 -4〉 〈0.95 -6〉

routing
GP-MT 58.394 62.533 58.239 58.247 59.443 60.302
GP-DR-P 56.956 62.024 58.819 60.385 57.396 57.101
GP-DR-S 55.759 63.250 57.230 61.882 59.697 60.996

sequencing
GP-MT 51.049 55.044 48.683 53.295 55.682 51.292
GP-DR-P 46.645 47.319 42.972 49.355 48.275 43.687
GP-DR-S 48.944 47.338 47.296 46.633 47.387 47.584

5.2 Effectiveness on Single Objective Optimisation

Theoretically, the newly proposed GPHH-DR should work for any number of objec-
tives. We have demonstrated the effectiveness of GPHH-DR on the multi-objective
DFJSS. It is interesting to know whether the advantage of GPHH-DR still holds for
single-objective DFJSS, which is considered easier than the multi-objective DFJSS. To
this end, we reran the algorithms on the DFJSS that minimises the mean tardiness alone
and compared their performance. We used the same experiment setting for the single-
objective and multi-objective optimisation, including the simulation model and param-
eter setting. The only difference here is that the selection is based purely on the mean
tardiness instead of dominance relation. For each run of each algorithm, the best rule
is obtained using a training set. Then, the best rules are applied to a separate test set,
and the test performance is calculated as the average mean tardiness of the generated
schedules on the test set.

Table 7 shows the test performance of the compared algorithms. In addition, each
GPHH-DR version is compared with GPHH-MT, which is the best existing GPHH al-
gorithm, using Wilcoxon’s rank sum test under the significance level of 0.05. The sig-

20 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

nificantly better results are marked in bold.

Table 7: The mean and standard deviation of the MT over the 30 independent runs of
the compared algorithms.
Scenario GP-LWT GP-MT GP-UM GP-DR-N GP-DR-P GP-DR-S
〈0.85 -2〉 8.872(0.191) 3.563(0.140) 9999(9999) 2.658(0.139) 2.684(0.174) 2.465(0.131)
〈0.85 -4〉 0.116(0.058) 0.040(0.008) 0.056(0.034) 0.045(0.003) 0.039(0.020) 0.036(0.008)
〈0.85 -6〉 0.043(0.003) 0.020(0.010) 9999(9999) 0.023(0.002) 0.030(0.076) 0.044(0.154)
〈0.95 -2〉 68.44(0.946) 22.05(0.772) 9999(9999) 17.44(0.388) 18.96(1.107) 17.61(0.806)
〈0.95 -4〉 4.271(0.238) 0.128(0.049) 9999(9999) 0.062(0.006) 0.109(0.048) 0.099(0.056)
〈0.95 -6〉 0.423(0.603) 0.028(0.036) 5.800(6.250) 0.027(0.012) 0.028(0.023) 0.022(0.009)

From the table, it is obvious that all three GPHH-DR versions significantly outper-
formed all the existing GPHH methods. Note that the results of GP-UM are usually
very huge (9999). This is because the evolved rules are not generalisable, and some
simulations in the test set never stop. The test performances of these rules were then
set to 9999.

An interesting observation from the table is that GPHH-DR-N performed com-
petitively with GPHH-DR-P and GPHH-DR-S. This is consistent with Figure 4, which
shows that GPHH-DR-N was able to reach very small mean tardiness. This indicates
that to minimise the mean tardiness, the sequencing decision can be made considerably
easily and much less sensitive to the pool of the candidate jobs. However, the energy
efficiency is a much more complex objective, and highly depends on the allocation of
the jobs to the machines. This makes the sequencing decision much more sensitive to
the given pool.

Figure 5 shows the converge curve of the test performance of the six algorithms.
The figure shows consistent patterns with Table 7. The three GPHH-DR versions con-
verged the fastest, while GPHH-UM performed the worst.

Overall, we can see that GPHH-DR can significantly outperform the GPHH coun-
terpart with immediate routing. If the objective is easy for the sequencing rule (e.g.
mean tardiness), then GPHH-DR-N can already perform competitively. When taking
more complex objectives such as energy efficiency into account, the more advanced
GPHH-DR-P and GPHH-DR-S become superior.

5.3 Effectiveness of Delayed Routing

Note that the effectiveness of GPHH-DR-P and GPHH-DR-S rely on the following two
components: (1) the novel heuristic template with delayed routing, and (2) the routing
and sequencing rules evolved by GP. To further verify the effectiveness of the novel
heuristic template with delayed routing, which is the major contribution in this work,
we compared the performance of different heuristic templates by fixing the rules as
the manually designed rules. This way, the impact of the GP-evolved rules can be
excluded. Note that when using the manually designed rules, the algorithms become
deterministic.

We select the Least Waiting Time (LWT) as the routing rule, and the ATC rule as
the sequencing rule, both are well-known manually designed rules for DFJSS (Tay and
Ho, 2008; Nguyen et al., 2013a).

Table 8 shows the mean tardiness obtained by the LWT+ATC rules on the heuristic
templates with immediate routing, parallel delayed routing, and sequential delayed
routing in different DFJSS scenarios. It is obvious that the two heuristic templates with
delayed routing obtained much smaller mean tardiness than the one with immediate

Evolutionary Computation Volume x, Number x 21

Binzi Xu et al.

Figure 5: The converge curve of average MT over 30 runs.

Table 8: The mean tardiness of the LWT+ATC rule in the heuristic templates with im-
mediate routing, parallel delayed routing and sequential delayed routing.

Heuristic template 〈0.85 -2〉 〈0.85 -4〉 〈0.85 -6〉 〈0.95 -2〉 〈0.95 -4〉 〈0.95 -6〉
immediate routing 37.387 10.147 3.922 332.848 217.855 161.701
parallel delayed routing 28.241 5.409 1.711 266.919 155.008 109.281
sequential delayed routing 27.084 5.340 1.746 257.458 147.687 103.197

routing for all the scenarios. This verifies the effectiveness of the proposed delayed
routing strategies. Another observation from Table 8 is that the results obtained by
LWT+ATC are much worse than the results obtained by GPHH in Table 7. This is
consistent with previous studies (Li et al., 2013; Tay and Ho, 2008; Nguyen et al., 2013a,
2019) that GPHH can evolve much better DRs than manually designed DRs.

Recalling that the main advantage of using DRs to solve DFJSS is its ability to
make decisions in real-time. Therefore, it is important to ensure that with the delayed
routing, the decisions can still be made in real-time. For this purpose, we also calculated
the time spent on each decision during the simulations. In the heuristic template with
immediate routing, the average time spent by each decision is 0.0014ms. The heuristic
templates with parallel and sequential delayed routing make each decision in 0.0022ms
and 0.0060ms, respectively. This shows that although the delayed routing strategy is
slower than the immediate routing strategy, it can still make sure that the decisions are
made in real-time.

22 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

5.4 Semantic Analysis of Evolved Rules

To gain deeper understandings of the evolved rules, we consider one run of GPHH-
DR-S in the 〈0.95-2〉 scenario. Again, we sort the individuals in the increasing order
of MT , and select the first individual, the last individual, and the median individual.
The three individuals are shown in Table 9, along with their two objective values. To
facilitate analysis, we simplified the rules using algebraic transformation (e.g. a−a = 0
and a/a = 1).

Table 9: Examples of the GP-evolved individuals
Individual #1 (MT=18.732, RECidle=0.508)
routing rule: (PT2+2NIQ×PT-MWT×PT-MP)×(max(PT, MP)+PT×NIQ)-2MWT-MP
sequencing rule: 2PT+2SL-WKR+max(3PT+2SL-2WKR, TIS/max(PT+WKR, MWT))
Individual #2 (MT=160.500, RECidle=0.113)
routing rule: min(WIQ-MP, 2PT)+min(WIQ-2MP, MWT2)-PT-MWT-MP
sequencing rule: 3WKR×(WKR-NIQ)×(PT×SL+NOR)
Individual #3 (MT=783.547, RECidle=0.031)
routing rule: 2PT×(NIQ-MP)-MP+NIQ×(2NIQ+PT-MWT)
sequencing rule: max(WKR, 2PT+2SL+NPT+OWT)

Individual #1 has the smallest MT and the highest RECidle among the three indi-
viduals. In other words, it focuses more on minimising MT . In its routing rule, PT is
frequently used and plays an important role in the priority. This rule tends to allocate
the operations to the machines with the smallest processing time. Another three main
components in the routing rule are MWT, NIQ, and MP. Specifically, the operation is
more likely to be allocated to a machine with smaller NIQ (fewer operations in the can-
didate operation set), larger MWT (has waited for longer), and larger standby power
consumption. On one hand, choosing the machine with smaller PT, smaller NIQ and
larger MWT tends to speed up the completion of the operations, and thus minimise the
mean tardiness. On the other hand, making the machines with larger standby power
consumption busier can effectively reduce RECidle. It can also be seen that PT, NIQ,
and MWT play more important roles than MP, as the priority function is of the second
order of PT, NIQ, and MWT, while of the first order of MP.

The sequencing rule obviously tends to select the operations with smaller process-
ing time, smaller slack and larger work remaining. This is consistent with intuition.
Note that several dispatching rules have also been manually designed based on sim-
ilar intuition to minimise mean tardiness and flowtime for JSS (e.g. PT+WINQ+SL
(Holthaus and Rajendran, 2000) and the rule selecting the operation with most work
remaining).

Individual #2 tries to find a trade-off between MT and RECidle. That is, it has
a reasonably good performance for both objectives in the test instances. The routing
rule contains five terms. The first two terms are min(WIQ-MP, 2PT) and (WIQ-2MP,
MWT2), indicating that the machines with smaller work in the candidate operation set,
smaller processing time, smaller waiting time, and larger standby power consumption
are more likely to be allocated.

In most cases, MP is much smaller than WIQ which means WIQ directly affects
the priority when PT and MWT are both large. When WIQ is large, PT and MWT show
more impact on the priority. There are three -MP terms in this rule which shows its
emphasis on RECidle. The sequencing rule tends to select the operations with smaller
work remaining, processing time and slack. Although it is reasonable to prefer the

Evolutionary Computation Volume x, Number x 23

Binzi Xu et al.

operations with smaller processing time and slack to minimise the mean tardiness, it is
a bit counter-intuitive to choose the operations with smaller work remaining. This may
be because of the difficulty of balancing the two conflicting objectives in the sequencing
rule.

Individual #3 mainly focuses on optimisingRECidle. To improveRECidle, it is im-
portant to keep the machines, especially those with high standby power consumption,
as busy as possible, so that the idle energy consumption is minimised. The routing rule
of individual #3 is obviously for this purpose. It tends to allocate operations to the ma-
chines with smaller size of candidate operation set (which are more likely to become
idle soon) and larger standby power consumption. In addition, it prefers the machines
with smaller processing time and larger waiting time as well, which can also reduce
machine idle time and speed up the completion of the operations, and thus reduce the
mean tardiness. For the sequencing rule, we observe similar patterns as in individ-
ual #2, where the operations with smaller processing time, slack and work remaining
are more likely to be selected. Again, it is counter-intuitive to select the operations with
smaller work remaining. A possible explanation is that the objectiveRECidle highly re-
lies on the routing decisions, which should make all the machines, especially the ones
with high standby power consumption, as busy as possible. As long as these machines
are busy, the sequencing decisions become less important.

Overall, we can see that individuals with different preferences between MT and
RECidle have quite different routing and sequencing rules. The routing rule is very im-
portant in all cases, to prefer the machines with smaller processing time, smaller work
in the candidate operation set, and larger standby power consumption. The sequencing
rule prefers the operations with smaller processing time and slack in all cases. How-
ever, as the preference shifts more towards RECidle, the sequencing rule becomes less
sensitive to the performance.

6 GPHH-DR in the Practical Situation

6.1 Relationship between GPHH-DR and Production Management Methods

Production management methods like pull systems, Kanban and theory-of-constraints
are very practical technologies implemented by manufacturing companies and used to
deal with multi-variety and small batch production, in which the key problem of them
is to reduce waste, stocks and etc. It is apparent that production management includes
all aspects of manufacturing.

Although production management methods and GPHH-DR both focus on the
scheduling, there still exist some differences because of the different angles of these
two methods. The main difference is that GPHH-DR treats the scheduling problem
as an optimisation problem and tries to find the optimal solution by iterative search,
while it is hard for production management methods to guarantee the optimality of
the solutions. Besides, GPHH-DR can focus on time-irrelevant objectives (e.g. energy
efficiency) simultaneously, while the production management methods pay more at-
tention to time-relevant objectives (e.g. job flow time) to ensure the regular operation
of the manufacturing system and avoid excess capacity.

6.2 Managerial Implication of GPHH-DR

Job shop is essentially a discrete manufacturing system and is different from the flow
shop. In the discrete manufacturing system, the semi-finished jobs are sent to a place
called buffer and wait to be allocated to the next processing machine in real production.
Buffer is a key component of the discrete manufacturing that balances the different

24 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

processing rates of different processing tasks. Actually, the “candidate operation set”
mentioned in the traditional GPHH are essentially buffers that store the semi-finished
jobs for the assigned machines in the job shop. The implication of proposed GPHH-DR
includes two types: single buffer and multiple buffers, as shown in Figure 6.

Job shop

Jobs arrive

Assign job

information

Completed

jobs

(a) The implication with single buffer

Job shop

Jobs arrive

Assign job

information

Completed

jobs

(b) The implication with multiple buffers

: Machine : Job : Select a job by GPHH-DR : Put the unfinished job to the buffer: Buffer

Figure 6: The managerial implication of GPHH-DR with different cases.

When there is only one big buffer in the job shop, it is the practical “pool” men-
tioned in the proposed algorithm. The semi-finished job is sent to this buffer physically
after the previous operation is finished. All the ready jobs/operations are waiting in
the big buffer until one of the machines becomes idle and chooses a job from this buffer.
Then, this chosen job will be sent to the idle machine to process by transportation fa-
cility. If all the operations of a job are finished, it will be sent to the finished product
warehouse directly.

Another feasible managerial implication of GPHH-DR requires multiple buffers
that belong to machines. In this case, a job that has been processed by a machine but has
not been allocated to the next machine will be placed in the machine’s buffer. This way,
the ”pool” is essentially the union of all the buffers of the machines. Then, when an
idle machine chooses this job to process next, the transportation facility will transport
this job from the buffer of the current machine to the idle machine to process directly.

In summary, the implication of GPHH-DR does not require any extra place or
changes. In this simplified version, the transportation cost was ignored. We will con-
sider the transportation cost during the routing decision in our future work.

7 Conclusions and Future Work

In this paper, we develop a novel GPHH, named GPHH-DR, for solving multi-objective
DFJSS that optimises the mean tardiness and energy efficiency simultaneously. We pro-
pose a novel heuristic template, which is a novel framework for the dispatching rules
to operate in to generate schedules in real-time. In the new heuristic template, each
routing decision is delayed rather than being made immediately. This way, the alloca-
tion of the ready operations to the machines can always take the latest information into
account, and thus the algorithm has a potential to make better routing decisions.

Based on the novel heuristic template, we proposed a naive delayed routing strat-
egy and two advanced delayed routing strategies. We found that simply delaying the
routing decisions and using a single sequencing rule (i.e. GPHH-DR-N) cannot lead to
promising results. This is because the sequencing rule cannot consider the routing deci-
sions (e.g. balancing the operations on different machines), and thus may easily lead to

Evolutionary Computation Volume x, Number x 25

Binzi Xu et al.

bottleneck machines. The more advanced strategies (i.e. GPHH-DR-P and GPHH-DR-
S) with both routing and sequencing rules, on the other hand, showed superior perfor-
mance over the current state-of-the-art GPHH with immediate routing for DFJSS. This
demonstrates the effectiveness of delaying the routing decisions to the last minute, and
making the sequencing decisions with smart allocation of the ready operations to the
machines.

In the future, we will extend the delayed routing strategy to more complex DFJSS,
such as many-objective problem and fuzzy DFJSS. Besides, it is also an urgent require-
ment for reducing the training cost of GPHH-DR. More efforts are needed to be done
to improve the performance of GPHH-DR to find optimal DRs. In this paper, only job
arrival is considered. Machine breaking down is also a dynamic event that worth to be
considered.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant
No. 61572238), the Marsden Fund of New Zealand (Nos. VUW1614 and VUW1209), the
Provincial Outstanding Youth Foundation of Jiangsu Province (Grant No. BK20160001)
and the 111 Project (Grant No.B12018).

References

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic Programming:
An Introduction, volume 1. Morgan Kaufmann San Francisco.

Brah, S. A. and Hunsucker, J. L. (1991). Branch and bound algorithm for the flow shop
with multiple processors. European Journal of Operational Research, 51(1):88–99.

Branke, J., Nguyen, S., Pickardt, C. W., and Zhang, M. (2016). Automated design of
production scheduling heuristics: A review. IEEE Transactions on Evolutionary Com-
putation, 20(1):110–124.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., and Woodward, J. R.
(2009). Exploring hyper-heuristic methodologies with genetic programming. In Com-
putational Intelligence, pages 177–201. Springer.

Dai, M., Tang, D., Giret, A., and Salido, M. A. (2019). Multi-objective optimization
for energy-efficient flexible job shop scheduling problem with transportation con-
straints. Robotics and Computer-Integrated Manufacturing, 59:143–157.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

Durasević, M. and Jakobović, D. (2018). Evolving dispatching rules for optimising
many-objective criteria in the unrelated machines environment. Genetic Programming
and Evolvable Machines, 19(1-2):9–51.

Durasević, M., Jakobović, D., and Knežević, K. (2016). Adaptive scheduling on unre-
lated machines with genetic programming. Applied Soft Computing, 48:419–430.

Gahm, C., Denz, F., Dirr, M., and Tuma, A. (2016). Energy-efficient scheduling in man-
ufacturing companies: a review and research framework. European Journal of Opera-
tional Research, 248(3):744–757.

26 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

Gao, K., Yang, F., Zhou, M., Pan, Q., and Suganthan, P. N. (2018). Flexible job-shop
rescheduling for new job insertion by using discrete jaya algorithm. IEEE Transactions
on Cybernetics, 49(5):1944–1955.

Gao, K. Z., Suganthan, P. N., Pan, Q. K., Tasgetiren, M. F., and Sadollah, A. (2016).
Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job
shop problem with new job insertion. Knowledge-Based Systems, 109:1–16.

Gao, L. and Pan, Q.-K. (2016). A shuffled multi-swarm micro-migrating birds optimizer
for a multi-resource-constrained flexible job shop scheduling problem. Information
Sciences, 372:655–676.

Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1(2):117–129.

He, Y., Li, Y., Wu, T., and Sutherland, J. W. (2015). An energy-responsive optimization
method for machine tool selection and operation sequence in flexible machining job
shops. Journal of Cleaner Production, 87:245–254.

Hildebrandt, T. and Branke, J. (2015). On using surrogates with genetic programming.
Evolutionary Computation, 23(3):343–367.

Hildebrandt, T., Heger, J., and Scholz-Reiter, B. (2010). Towards improved dispatching
rules for complex shop floor scenarios: a genetic programming approach. In Pro-
ceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pages
257–264. ACM.

Holthaus, O. and Rajendran, C. (2000). Efficient jobshop dispatching rules: further
developments. Production Planning & Control, 11(2):171–178.

Hong, L., Drake, J. H., Woodward, J. R., and Özcan, E. (2018). A hyper-heuristic ap-
proach to automated generation of mutation operators for evolutionary program-
ming. Applied Soft Computing, 62:162–175.

Huang, J. and Süer, G. A. (2015). A dispatching rule-based genetic algorithm for multi-
objective job shop scheduling using fuzzy satisfaction levels. Computers & Industrial
Engineering, 86:29–42.

Ishibuchi, H., Imada, R., Setoguchi, Y., and Nojima, Y. (2017). Reference point specifica-
tion in hypervolume calculation for fair comparison and efficient search. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 585–592. ACM.

Jain, A. S. and Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and
future. European Journal of Operational Research, 113(2):390–434.

Jensen, M. T. (2003). Generating robust and flexible job shop schedules using genetic
algorithms. IEEE Transactions on Evolutionary Computation, 7(3):275–288.

Jose, B. A., Katie, M., and Ruben, P. (2019). Energy cost minimization for unrelated
parallel machine scheduling under real time and demand charge pricing. Journal of
Cleaner Production, 208:232–242.

Karimi-Nasab, M., Modarres, M., and Seyedhoseini, S. (2015). A self-adaptive pso for
joint lot sizing and job shop scheduling with compressible process times. Applied Soft
Computing, 27:137–147.

Evolutionary Computation Volume x, Number x 27

Binzi Xu et al.

Langdon, W. B. and Harman, M. (2015). Optimizing existing software with genetic
programming. IEEE Transactions on Evolutionary Computation, 19(1):118–135.

Lei, D., Gao, L., and Zheng, Y. (2018). A novel teaching-learning-based optimization
algorithm for energy-efficient scheduling in hybrid flow shop. IEEE Transactions on
Engineering Management, 65(2):330–340.

Li, N., Liang, G., Li, P., and Li, X. (2013). A gep-based reactive scheduling policies
constructing approach for dynamic flexible job shop scheduling problem with job
release dates. Journal of Intelligent Manufacturing, 24(4):763–774.

Lin, J. (2019). Backtracking search based hyper-heuristic for the flexible job-shop
scheduling problem with fuzzy processing time. Engineering Applications of Artificial
Intelligence, 77:186–196.

Liu, Y., Dong, H., Lohse, N., and Petrovic, S. (2016). A multi-objective genetic algorithm
for optimisation of energy consumption and shop floor production performance. In-
ternational Journal of Production Economics, 179:259–272.

May, G., Stahl, B., Taisch, M., and Kiritsis, D. (2017). Energy management in man-
ufacturing: From literature review to a conceptual framework. Journal of Cleaner
Production, 167:1464–1489.

Mei, Y., Nguyen, S., Xue, B., and Zhang, M. (2017). An efficient feature selection al-
gorithm for evolving job shop scheduling rules with genetic programming. IEEE
Transactions on Emerging Topics in Computational Intelligence, 1(5):339–353.

Meng, L., Zhang, C., Shao, X., and Ren, Y. (2019). Milp models for energy-aware flexible
job shop scheduling problem. Journal of Cleaner Production, 210:710–723.

Mokhtari, H. and Dadgar, M. (2015). Scheduling optimization of a stochastic flexible
job-shop system with time-varying machine failure rate. Computers & Operations Re-
search, 61:31–45.

Mokhtari, H. and Hasani, A. (2017). An energy-efficient multi-objective optimization
for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104:339–
352.

Nag, K. and Pal, N. R. (2016). A multiobjective genetic programming-based ensemble
for simultaneous feature selection and classification. IEEE Transactions on Cybernetics,
46(2):499–510.

Nguyen, S., Mei, Y., Ma, H., Chen, A., and Zhang, M. (2016). Evolutionary scheduling
and combinatorial optimisation: Applications, challenges, and future directions. In
2016 IEEE Congress on Evolutionary Computation (CEC), pages 3053–3060. IEEE.

Nguyen, S., Mei, Y., Xue, B., and Zhang, M. (2019). A hybrid genetic programming algo-
rithm for automated design of dispatching rules. Evolutionary Computation, 27(3):467–
496.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2013a). A computational study of
representations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5):621–639.

28 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2013b). Learning iterative dis-
patching rules for job shop scheduling with genetic programming. The International
Journal of Advanced Manufacturing Technology, 67(1-4):85–100.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2014). Automatic design of
scheduling policies for dynamic multi-objective job shop scheduling via cooperative
coevolution genetic programming. IEEE Transactions on Evolutionary Computation,
18(2):193–208.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2015). Automatic programming
via iterated local search for dynamic job shop scheduling. IEEE Transactions on Cy-
bernetics, 45(1):1–14.

Nguyen, S., Zhang, M., and Tan, K. C. (2017). Surrogate-assisted genetic programming
with simplified models for automated design of dispatching rules. IEEE Transactions
on Cybernetics, 47(9):2951–2965.

Nguyen, S., Zhang, M., and Tan, K. C. (2018). Adaptive charting genetic programming
for dynamic flexible job shop scheduling. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1159–1166. ACM.

Nie, L., Gao, L., Li, P., and Shao, X. (2013). Reactive scheduling in a job shop where jobs
arrive over time. Computers & Industrial Engineering, 66(2):389–405.

Niroomand, S., Hadi-Vencheh, A., Mirzaei, N., and Molla-Alizadeh-Zavardehi, S.
(2016). Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a
special single machine scheduling problem: case study and generalisation. Interna-
tional Journal of Computer Integrated Manufacturing, 29(8):870–888.

Ouelhadj, D. and Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 12(4):417.

Panwalkar, S. S. and Iskander, W. (1977). A survey of scheduling rules. Operations
Research, 25(1):45–61.

Park, J., Mei, Y., Nguyen, S., Chen, G., and Zhang, M. (2018). An investigation of ensem-
ble combination schemes for genetic programming based hyper-heuristic approaches
to dynamic job shop scheduling. Applied Soft Computing, 63:72–86.

Peng, B., Lü, Z., and Cheng, T. (2015). A tabu search/path relinking algorithm to solve
the job shop scheduling problem. Computers & Operations Research, 53:154–164.

Pickardt, C. W., Hildebrandt, T., Branke, J., Heger, J., and Scholz-Reiter, B. (2013). Evo-
lutionary generation of dispatching rule sets for complex dynamic scheduling prob-
lems. International Journal of Production Economics, 145(1):67–77.

Pour, S. M., Drake, J. H., Ejlertsen, L. S., Rasmussen, K. M., and Burke, E. K. (2018).
A hybrid constraint programming/mixed integer programming framework for the
preventive signaling maintenance crew scheduling problem. European Journal of Op-
erational Research, 269(1):341–352.

Rajendran, C. and Holthaus, O. (1999). A comparative study of dispatching rules in dy-
namic flowshops and jobshops. European Journal of Operational Research, 116(1):156–
170.

Evolutionary Computation Volume x, Number x 29

Binzi Xu et al.

Romero-Silva, R., Shaaban, S., Marsillac, E., and Hurtado, M. (2018). Exploiting the
characteristics of serial queues to reduce the mean and variance of flow time using
combined priority rules. International Journal of Production Economics, 196:211–225.

Rubaiee, S. and Yildirim, M. B. (2019). An energy-aware multiobjective ant colony
algorithm to minimize total completion time and energy cost on a single-machine
preemptive scheduling. Computers & Industrial Engineering, 127:240–252.

Salido, M. A., Escamilla, J., Giret, A., and Barber, F. (2016). A genetic algorithm for
energy-efficiency in job-shop scheduling. The International Journal of Advanced Manu-
facturing Technology, 85(5-8):1303–1314.

Shahgholi Zadeh, M., Katebi, Y., and Doniavi, A. (2019). A heuristic model for dy-
namic flexible job shop scheduling problem considering variable processing times.
International Journal of Production Research, 57(10):3020–3035.

Shen, X. N. and Yao, X. (2015). Mathematical modeling and multi-objective evolution-
ary algorithms applied to dynamic flexible job shop scheduling problems. Information
Sciences, 298:198–224.

Shoraneh, K. M. and Kazuhiro, S. (2019). On optimal dynamic pegging in rescheduling
for new order arrival. Computers & Industrial Engineering, 136:46–56.

Sun, L., Lin, L., Gen, M., and Li, H. (2019). A hybrid cooperative coevolution algorithm
for fuzzy flexible job shop scheduling. IEEE Transactions on Fuzzy Systems, 27(5):1008–
1022.

Tang, D., Dai, M., Salido, M. A., and Giret, A. (2016). Energy-efficient dynamic schedul-
ing for a flexible flow shop using an improved particle swarm optimization. Comput-
ers in Industry, 81:82–95.

Tay, J. C. and Ho, N. B. (2008). Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems. Computers & Industrial Engi-
neering, 54(3):453–473.

Vepsalainen, A. P. and Morton, T. E. (1987). Priority rules for job shops with weighted
tardiness costs. Management Science, 33(8):1035–1047.

Wang, H., Jiang, Z., Wang, Y., Zhang, H., and Wang, Y. (2018a). A two-stage optimiza-
tion method for energy-saving flexible job-shop scheduling based on energy dynamic
characterization. Journal of Cleaner Production, 188:575–588.

Wang, Q., Liu, F., and Li, C. (2013). An integrated method for assessing the energy
efficiency of machining workshop. Journal of Cleaner Production, 52:122–133.

Wang, S., Wang, X., Yu, J., Ma, S., and Liu, M. (2018b). Bi-objective identical parallel
machine scheduling to minimize total energy consumption and makespan. Journal of
Cleaner Production, 193:424–440.

Wu, X. and Sun, Y. (2018). A green scheduling algorithm for flexible job shop with
energy-saving measures. Journal of Cleaner Production, 172:3249–3264.

Yska, D., Mei, Y., and Zhang, M. (2018). Genetic programming hyper-heuristic with
cooperative coevolution for dynamic flexible job shop scheduling. In European Con-
ference on Genetic Programming, pages 306–321. Springer.

30 Evolutionary Computation Volume x, Number x

Genetic Programming with Delayed Routing for Multi-Objective DFJSS

Zandieh, M., Khatami, A., and Rahmati, S. H. A. (2017). Flexible job shop scheduling
under condition-based maintenance: improved version of imperialist competitive
algorithm. Applied Soft Computing, 58:449–464.

Zhang, F., Mei, Y., and Zhang, M. (2018). Genetic programming with multi-tree repre-
sentation for dynamic flexible job shop scheduling. In Australasian Joint Conference on
Artificial Intelligence, pages 472–484. Springer.

Zhang, R. and Chiong, R. (2016). Solving the energy-efficient job shop scheduling prob-
lem: a multi-objective genetic algorithm with enhanced local search for minimizing
the total weighted tardiness and total energy consumption. Journal of Cleaner Produc-
tion, 112:3361–3375.

Zhang, Z., Tang, R., Peng, T., Tao, L., and Jia, S. (2016). A method for minimizing
the energy consumption of machining system: integration of process planning and
scheduling. Journal of Cleaner Production, 137:1647–1662.

Zhu, Z. and Zhou, X. (2020). An efficient evolutionary grey wolf optimizer for multi-
objective flexible job shop scheduling problem with hierarchical job precedence con-
straints. Computers & Industrial Engineering, 140:106280.

Evolutionary Computation Volume x, Number x 31

