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Abstract—Built-up area extraction from remote sensing im-
ages is important to monitor and manage urbanization and
industrialization. In this work, we propose two built-up area
extraction techniques based on the analysis of fully PolSAR
data. Both methods exploit the geodesic distance on the unit
sphere in the space of Kennaugh matrices. The first method is
based on the three dominant scattering types in the scene and
compares them with scattering models; if any of them matches
with built-up type elementary scattering models, then the pixel
is said to belong to a built-up area. The second method is
based on a novel PolSAR built-up index (RBUI) composed by
considering scattering mechanisms from built-up structures. The
two proposed techniques are validated on two different urban
scenes, one acquired at C-band by RADARSAT-2 and other at
L-band by ALOS-2 SAR sensors.

Index Terms—SAR Polarimetry, urban, built-up, mapping,
geodesic distance, radar built-up index (RBUI), scattering simi-
larity, Kennaugh matrix.

I. INTRODUCTION

The mapping of urban areas in the context of Earth Observa-
tion (EO) has been carried out mostly by very high resolution
(VHR) optical data. An in-depth review of the importance of
human settlements mapping in EO is given in [1], [2].

Recent interest has arisen in using Synthetic Aperture Radar
(SAR) sensors for EO as an alternative. Active SAR sensors
are useful for EO applications because of their all-weather and
day-night ability to acquire images. In the literature, intensity
SAR data have been used for built-up area mapping [3]–
[5]. Target descriptions provided by full-polarimetric SAR
(PolSAR) data might be even more useful. Nevertheless, they
are hard to employ due to the complex interactions in urban
areas among the electromagnetic waves, the targets, and their
surroundings. Therefore, the main avenues for extracting built-
up area information from PolSAR imagery range from using
decomposition theorems to feeding the data into deep learning
architectures.

D. Ratha and A. Bhattacharya are with Centre of Studies in Resources
Engineering, Indian Institute of Technology Bombay, India - 400076. (e-mail:
debanshu.ratha@gmail.com, avikb@csre.iitb.ac.in)

P. Gamba is with the Department of Electronic, Biomedical and
Computer Engineering, University of Pavia, Pavia 27100, Italy. (email:
paolo.gamba@unipv.it)
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Specifically, in 2013, Kajimoto et al. [6] proposed an urban
area extraction method by a two-step classification technique.
Azmedroub et al. [7] used a model-based scattering decompo-
sition powers in one method and the coefficients of scattering
covariance matrix in the circular polarization basis in another
method. Duan et al. [8] introduced a correlation coefficient to
characterize scattering mechanisms of urban targets affected
by azimuthal orientation. These methods are solely based on
the discrimination of orthogonal and oriented structures about
the radar line of sight (LOS) within the built-up area. Xiang
et al. [9] combined reflection asymmetry with azimuth non-
stationarity to improve the detection accuracy of human-made
targets. In another study, Xiang et al. [10] used decision level
fusion of built-up area information from a multiple-component
model-based scattering decomposition method and a new
coherence coefficient from a sub-aperture decomposition. Wu
et al. [11] proposed a methodology involving nonzero-mean
statistical models to differentiate human-made and natural
targets. Even though the reflection symmetric property has
excellent potential for built-up area target discrimination, there
is a trade-off between the required number of sub-aperture for
the detection of targets [9] in the built-up area. Finally, De et
al. [12] used a novel data augmentation strategy in conjunc-
tion with a stacked auto-encoder architecture to improve the
generalization capabilities of a neural network for enhanced
urban classification.

From the processing point of view, these state-of-the-art
methods span from decision trees to mixture models to deep
learning respectively. In general, they require either long
processing steps for backscatter analysis or manual setting
of the hyper-parameters. This work aims at completing this
scenario with a technique that is direct and intuitive, as well
as easy to implement. Another objective is introducing a novel
pixel-based built-up index in PolSAR based on exploiting
scattering mechanisms.

In [13] the cross-polarized component is found to be useful
to distinguish between forests and oriented urban buildings.
Ref. [14] considers the effect of the double Brewster an-
gle on dihedrals which strongly affects the V V amplitude.
Finally [15] studies the backscatter response from rotated
dihedrals for which the signature is often very confusing.
Bearing this in mind, in this study we propose a scattering
similarity-based approach using the observed data and specific
elementary scattering models. Structures within built-up areas
show a high degree of similarity with narrow dihedral and
dihedral models [16], while the cross-polarized component
exists only with the helix models. Additionally, a new radar
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built-up index (RBUI) is proposed and validated in two test
locations with data acquired by two different PolSAR sensors.

II. METHODOLOGY

In PolSAR, the 2× 2 complex scattering matrix S encom-
passes complete polarimetric information about backscattering
data from targets:

S =

[
SHH SHV
SV H SV V

]
(1)

where the subscript H and V denote horizontal and vertical
polarizations respectively. Following the reciprocity theorem
in the case of a monostatic radar, SHV = SV H .

A suitable representation of PolSAR data in terms of power
is given by the 4×4 real Kennaugh matrix K defined as [17]:

K =
1

2
A∗(S ⊗ S∗)AH , A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 j −j 0

 (2)

where ⊗ is the Kronecker product, and j =
√
−1.

Alternatively, the Kennaugh matrix for the incoherent target
scattering can be written in terms of the elements of the
coherency matrix T as:

K =


T11+T22+T33

2 <(T12) <(T13) =(T23)
<(T12) T11+T22−T33

2 <(T23) =(T13)
<(T13) <(T23) T11−T22+T33

2 −=(T12)
=(T23) =(T13) −=(T12) −T11+T22+T33

2

 (3)

where < and = denote the real and imaginary parts of a
complex number.

There are a number of elementary scattering models: di-
hedral (d), narrow dihedral (nd), trihedral (t), cylinder (c),
dipole (dp), quarter-wave devices (±1/4), left helix (lh), and
right helix (rh). Table I presents their Kennaugh matrix form.

TABLE I: Kennaugh Matrices for Elementary Targets

Target Row 1 Row 2 Row 3 Row 4

Kd 1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1
Knd 5/8 3/8 0 0 3/8 5/8 0 0 0 0 -1/2 0 0 0 0 1/2
Kt 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1
Kc 5/8 3/8 0 0 3/8 5/8 0 0 0 0 1/2 0 0 0 0 -1/2
Kdp 1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0
K+1/4 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
K−1/4 1 0 0 0 0 1 0 0 0 0 0 -1 0 0 -1 0

Klh 1 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 1
Krh 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

The similarity measure defined in [18] corresponding to an
elementary scatterer Ki is given as:

fi = 1−GD(K,Ki) (4)

where GD denotes the geodesic distance on the unit sphere
in the Kennaugh matrix space [19]:

GD(K1,K2) =
2

π
cos−1 Tr(K1

TK2)√
Tr(K1

TK1)
√

Tr(K2
TK2)

(5)

where Tr is the trace operator. In this work, since our concern
is primarily to extract built-up areas, we are only interested in

three elementary scattering models: dihedral, narrow dihedral
and helix.

The flowchart of the two approaches for the extraction of a
built-up area map using PolSAR data is shown in Fig. 1. We
discuss the steps in the following.

1) Input Scattering Models: The algorithm considers the
elementary scattering models given in Table I along with
the observed Kennaugh matrix K as input. Except for
the helix, the rest of them are symmetric scatterers i.e.,
they have an axis of symmetry in the plane perpendicular
to radar LOS.

2) Desying to Maximal Similarity: Very often, it is possible
that in built-up areas the symmetric scatterers are placed
obliquely to the radar LOS. Hence, in this situation, the
target is deoriented using Huynen’s desying operation:

K(θ) = R(θ)KR(θ)T ; −π
8
≤ θ ≤ π

8

R(θ) =


1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1


This step takes into account the orientation of the ob-
served target by determining which symmetric scatterer
it closely corresponds to. This process leads to the
determination of Kms, the K(θ) for some θ = θms for
which the similarity of the target with a symmetric scat-
tering model is maximized, i.e., the geodesic distance is
minimized:

GD(K(θms),Kj) = min
θ,i

GD(K(θ),Ki)

3) Scattering Similarity: The similarity of a target Kms

with the elementary scattering models is evaluated using
the similarity measure, fi, where i denotes the subscript
for each elementary scattering models. The vector f =
[fd, fnd, . . . , flh, frh] denotes the scattering similarities
corresponding to each elementary target.

Once the scattering similarities for each elementary scatter-
ing models are obtained, two methods can be implemented to
extract a built-up area map. Method I uses only the order
of dominance of the similarities obtained in the last step
(Step 3 above). This method needs no thresholding, whereas,
Method II first proposes a radar built-up index which is then
suitably thresholded by the Otsu method to map the built-up
area.

A. Method I

1) Dominance Sorter: The scattering similarities are sorted
in descending order. Vector D = [fi1 , fi2 , . . . , fiN ]
represents the dominance order of the scattering mech-
anisms, i.e., fi1 ≥ fi2 ≥ · · · ≥ fiN , where fij
denotes the scattering similarity to the j-th dominant
elementary scattering model and N is the total number
of elementary scattering models.

2) Built-up Condition: The first three dominant similarities
(fi1 , fi2 and fi3 ) are individually matched with the ele-
ments from the set {fd, fnd, flh, frh} i.e. the elementary
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Fig. 1: Flowchart showing two methods for extraction of targets in the built-up area: Method I (threshold-free) and Method II
(using thresholding)

scattering models corresponding to target in the built-up
area, viz., dihedral, narrow dihedral and helix. If a match
is found for atleast one of the fi1 , fi2 and fi3 , then the
pixel is said to be of built-up type.

B. Method II

1) Index Map: Combining scattering similarities, a novel
radar built-up index (RBUI) is proposed, defined as:

RBUI = max{fd, fnd, flh, frh}; 0 ≤ RBUI ≤ 1.
(6)

The higher the value of RBUI, the higher is the evidence
of the pixel being of built-up type.

2) Thresholding: The RBUI is thresholded using the Otsu
method [20] to form a binary (0 or 1) built-up area map.

In the next section, both the methods are quantitatively
as well as qualitatively compared using PolSAR images and
reference maps. These reference maps are generated by visual
interpretation and fusion of geospatial data from multiple free
sources.

III. RESULTS AND DISCUSSION

The results are shown using a RADARSAT-2 PolSAR image
over San-Francisco, USA and an ALOS-2 L-band PolSAR
image over Kyoto, Japan. The incidence angle varies from

28.0◦ to 29.8◦ from near to far range for the RADARSAT-2
image, and the scene-centered incidence angle is 30.9◦ for the
ALOS-2 image. The San-Francisco image (762× 978 pixels)
is multilooked by a factor of 2 in range and 4 in azimuth
effectively providing a ground range pixel resolution of 20m
while the Kyoto image (1616 × 2826 pixels) is multilooked
by a factor of 3 in range and 5 in azimuth providing a ground
range pixel resolution of 15.7m.

Figs. 3(a) and 5(a) show the dominance of type scatterings
prevalent in built-up areas. The pixels for which the similarity
of Kms among all the scattering models is highest for a
built-up type scattering model, i.e., either the dihedral, narrow
dihedral or the helices, are colored in red. Similarly, pixels for
which built-up type scattering is second dominant whereas the
first dominant is of non-built-up type are shown in green. Blue
pixels indicate the third dominant scattering, and the remaining
pixels are in black. It may be noted that only the first three
dominant scattering mechanisms are compared with the built-
up type models. Following this, a majority of the built-up areas
are successfully captured using Method I; this can be seen in
the built-up area maps presented in Figs. 3(b) and 5(b).

Table II shows the contribution of different built-up area
scattering dominance types to built-up producer accuracy (%)
of Method I. It can be seen that most of the built-up area pixels
have a built-up type scattering as the dominant scattering
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mechanism. The more difficult built-up area pixels which are
severely oriented or situated on undulating terrain have built-
up type scattering as secondary dominant mechanisms. This
was why it is necessary to go beyond the most dominant
scattering mechanism to detect more of the built-up area.

TABLE II: Contribution of different built-up area scattering
dominance types to built-up area producer accuracy (%) of
Method I

I II III

San-Francisco (RS-2) 45 15 7

Kyoto (ALOS-2) 50 13 5

The radar built-up index (RBUI) maps for San Francisco,
and Kyoto are shown in Figs. 4(a) and 6(a) respectively.
The majority of built-up structures show a value greater
than 0.5, while water bodies and bare surface have values
ranging between 0 and 0.1. The areas with vegetation fall on
the lower side of 0.5. Hence, from these observations, 0.5
can be considered as a threshold to obtain the built-up area
maps. However, a more systematic thresholding algorithm was
employed in this study. The binary maps showing built-up
areas in Figs. 4(b) and 6(b) were obtained by applying the
Otsu thresholding technique [20].

(a) Pauli RGB for SF (b) Reference map for SF

(c) Pauli RGB for KY (d) Reference map for KY

Fig. 2: Pauli RGB and reference maps for built-up area
within multi-looked RADARSAT-2 C-band image over San
Francisco, USA and ALOS-2 L-band image over Kyoto, Japan.

Tables III and IV provide a quantitative assessment of the
effectiveness of Method I and Method II for built-up area

(a) Built-Up Area Scattering Domi-
nance

(b) Built-Up Area Map (Method I)

Fig. 3: Built-Up Area Maps for multi-looked RADARSAT-2
C-band image over San Francisco, USA.

(a) Built-Up Index (b) Built-Up Area Map (Method II)

Fig. 4: Built-Up Area Maps for multi-looked RADARSAT-2
C-band image over San Francisco, USA.

extraction, respectively. The reference maps corresponding to
the PolSAR scene of San Francisco and Kyoto are shown in
Figs. 2(b) and 2(d). The performance of the two methods is
assessed by:

• P1 and P2, the producer accuracy for built-up type (BU)
and non-built-up type pixels (NBU) respectively.

• OA, the overall accuracy achieved with the method.

(a) Built-Up Area Scattering Domi-
nance

(b) Built-Up Area Map (Method I)

Fig. 5: Built-Up Area Maps for multi-looked ALOS-2 L-band
image over Kyoto, Japan.
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(a) Built-Up Index (b) Built-Up Area Map (Method II)

Fig. 6: Built-Up Area Maps for multi-looked ALOS-2 L-band
image over Kyoto, Japan.

TABLE III: Performance Metrics in %: Method I

P1 P2 OA

San-Francisco (RS-2) 67 92 84

Kyoto (ALOS-2) 68 95 88

TABLE IV: Performance Metrics in %: Method II

P1 P2 OA

San-Francisco (RS-2) 69 92 85

Kyoto (ALOS-2) 47 98 84

From Tables III and IV, it is observed that Method I is
slightly more robust than Method II. In particular, for the
ALOS-2 scene, the former detects actual built-up area pixels
in a more accurate way (P1 = 68% > 47%), although both
methods are comparable with respect to P2 and OA.

The poor performance of Method II with respect to P1

is due to the low dynamical range of RBUI over ALOS-2
scene as seen in Fig. 6(a) in comparison to Fig. 4(a) for the
RADARSAT-2 scene. This results in a lack of clear decision
boundary for the built-up area and non-built-up area pixels
in the image for the ALOS-2 scene by the Otsu method.
Method I is a categorical approach, hence devoid of such a
difficulty. Instead, the RBUI can be utilized for situations that
may require a continuous range built-up index, for instance,
to map built-up area density.

IV. CONCLUSION

In this work, two simple methodologies along with a new
radar built-up index (RBUI) have been proposed for built-up
area extraction from PolSAR imagery.

Method I demonstrates that the first three scattering mecha-
nisms are sufficient for the detection of built-up area, whereas
Method II shows the effectiveness of the proposed RBUI in
differentiating the built-up area from bare regions.

Both methods achieve overall accuracy of around 80-90%
and exploit a notion of similarity to elementary scattering

models, but they are different in the sense that they are
categorical and quantitative, respectively.

It is worth noting, finally, that in this work the built-up area
maps are a sort of “byproduct” of more useful maps, such as
built-up area scattering dominance and RBUI values. In the
future, besides exploiting this information more extensively,
we plan to extend the methodology to bistatic radar datasets.
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