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Abstract—In this paper we propose a new despeckling filter for
Fully PolSAR (Polarimetric Synthetic Aperture Radar) images
defined by 3×3 complex Wishart distributions. We first generalize
the well-known structure tensor to deal with PolSAR data which
allows to efficiently measure the dominant direction and contrast
of edges. The generalization includes stochastic distances defined
in the space of Wishart matrices. Then, we embed the formulation
into an anisotropic diffusion-like schema to build a filter able to
reduce speckle and preserve edges. We evaluate its performance
through an innovative experimental setup that also includes
Monte Carlo analysis. We compare the results with a state-of-
the-art polarimetric filter.

Index Terms—Synthetic Aperture Radar Polarimetry, Struc-
ture Tensor, Despeckling, Monte Carlo.

I. INTRODUCTION

FULLY POLSAR (Polarimetric Synthetic Aperture Radar)
measures the target reflectivity by using four polarization

combinations, which provide better scattering measures than
monopolarized SAR systems. Due to that, PolSAR is an
effective tool to monitoring ground surface and to perform
terrain and land use classification [1]

Spaceborne systems such as RADARSAT-2, Gaofen-3,
ALOS-PALSAR, Sentinel, or TerraSAR-X provide huge
amounts of PolSAR/SAR data of the earth surface through
daily continuous observation. Therefore, automatic tools for
data analysis are indeed required. However, every SAR image
is corrupted with inherent multiplicative noise (speckle) caused
by the coherent interference of waves reflected from the many
elementary scatterers within the illuminated scene [2]. Speckle
is not truly a noise in the signal processing sense as it provides
valuable information. However, speckle makes PolSAR images
difficult to interpret, and despeckling is often required to
improve image segmentation and classification.

Despeckling filters for PolSAR is an active area of research
in remote sensing. There are five main classes:

1) Local filters which use local statistical analysis of data to
estimate a speckle reduced model, being the Enhanced
Lee filter [3] its most prominent example.

2) Methods based on Partial Differential Equations (PDE),
which work in the whole image (see [4], [5]).
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3) Variational methods [6] combine PDE methods with an
optimization strategy, and work also globally.

4) Heuristic methods derive from machine learning strate-
gies, and the CNNs (convolutional neural networks) are
showing excellent performance [7].

5) Non-local means filters [8] analyze the similarities be-
tween image regions (patches), to estimate a set of
weights of a standard mean filter (box filter).

See [9] for a recent review on this topic.
Many of these filters were originally designed to deal with

Gaussian noise and then adapted to the peculiarities of both
the speckle and the PolSAR data. For instance, Deledalle
et al. [10] adapted the original non-local means filter to
PolSAR data. Torres et al. [11] followed this approach and
introduced stochastic distances between PolSAR models. Even
the Enhanced Lee filter is adapted to full-channel data from
its original design intended for monopolarized data.

Terebes et al. [12] proposed a Perona-Malik type diffusion
filter where the diffusion coefficient is computed from the
named multiplicative gradient without using stochastic dis-
tances. Jiang et al. [13] employed a measure based on the trace
of the covariance matrix, while our approach employs all the
information it contains. In this work, we use a generalization of
the structure tensor to deal with the inherent particularities of
PolSAR data. This operator provides a good estimation of the
local variability of the PolSAR image in terms of stochastic
distances between Wishart distributions. By embedding this
structure tensor into an anisotropic diffusion-like schema, we
propose a new despeckling filter that preserves the mean and
edges while notably reducing image speckle. Additionally,
since it relies on linear operations, it preserves the polarimetric
signature. To the best of our knowledge the idea of using
the structure tensor and stochastic distances to manage the
diffusion power of the filter is completely new.

This paper is organized as follows. Section II recalls the
Wishart distribution and presents the structure tensor model.
Section III details the design of the proposed filter. In Sec-
tion IV we present the results. Section V concludes this paper.

II. WISHART DISTRIBUTION AND THE GENERALIZED
STRUCTURE TENSOR

PolSAR data measures, for each pixel, the scattering as
entries of a 2 × 2 complex matrix. Such matrices have four
distinct complex elements, SVV, SVH, SHV, and SHH, where
the component Sij is the backscattered signal for the ith

transmission and jth is the reception linear polarization, where
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i and j represent the horizontal (H) and the vertical (V)
polarizations, respectively. For the case of dealing with a
reciprocal medium (the common case in remote sensing [2]),
SHV = SVH. Therefore, the signal backscattered by each
resolution cell can be characterized by the complex scattering
vector Ω =

[
SVV SVH SHH

]T
, where T stands for vector

transposition. This random vector can be modeled by a mul-
tivariate complex Gaussian distribution [14].

Multilook processing is applied to raw data to reduce
speckle and enhance the signal-to-noise ratio. It is performed
by averaging L (number of looks) ideally independent acqui-
sitions of the same illuminated scene by the PolSAR sensor,
and from that, each observation can be expressed by

Σ =
1

L

L∑
`=1

Ω`Ω
H
` , (1)

where H denotes the complex conjugate of the transposed
vector Ω`, with ` = 1, 2, . . . , L scattering vectors. The
number of looks L is unique for the whole image and known.
If necessary, it may be also estimated from the data. The
matrix Σ is Hermitian positive definite and it follows a scaled
complex Wishart distribution (see [15]).

A. Generalized structure tensor

We use a generalization of the structure tensor introduced
in [16] to PolSAR images. Given a stochastic distance dS(·, ·),
for n,m ∈ {−h, 0, h} (where h is the interpixel distance) and
(x, y) an image point, we define

dn,mσ (x, y) = dS(Iσ(x+ n, y +m), Iσ(x− n, y −m)), (2)

where Iσ represents the convolution of the original PolSAR
image with a Gaussian kernel Kσ . Then we define the gener-
alization of the structure tensor matrix as

Jρ(Iσ) ≡ Kρ ∗

( (
d1,0
σ

)2
sgn(s)d1,0

σ d0,1
σ

sgn(s)d1,0
σ d0,1

σ

(
d0,1
σ

)2
)
, (3)

where s(x, y) = d1,1
σ (x, y) − d1,−1

σ (x, y) and sgn(·) is
the signum function. The largest eigenvalue of this matrix
λmax(Jρ(Iσ))(x, y) measures the variability of the PolSAR
image in a neighborhood of (x, y). The main advantage with
respect to other extensions of the structure tensor of vector-
valued images is that the one proposed is adapted to PolSAR
data and it uses stochastic distances to account for image
variability.

In this work we use the Kullback-Leibler (KL) stochastic
distance:

dKL (Σ1,Σ2) = L

[
tr
(
Σ−1

1 Σ2 + Σ−1
2 Σ1

)
2

− 3

]
,

where tr(·) represents the trace operator.

III. STRUCTURE TENSOR FILTER

We propose a new anisotropic diffusion filter for PolSAR
images. Taking the original PolSAR image I0(x, y) as initial

guess, the filtered image I(t, x, y) is given by the solution of
the partial differential equation

∂I

∂t
= div

(
g

(√
λmax(Jρ(Iσ))

)
∇I
)
, (4)

where g(·) is an edge-stopping function. Anisotropic diffusion
filtering is a classical tool in computer vision originally intro-
duced by Perona and Malik [17]. In the Perona-Malik model
edges are preserved because the diffusion is stopped in the
points where there is a high variability of the image intensity
value. Since the original Perona-Malik model is formulated
for scalar images, the differential operator |∇I| provides a
good estimation of the local variability of the image. In this
paper, we deal with PolSAR images where in each point
we have a 3 × 3 complex matrix described by a Wishart
distribution, so in our case we measure the local variability in
terms of stochastic distances between Wishart distributions. In
that sense the proposed operator g

(√
λmax(Jρ(Iσ))

)
provides

a good estimation of such local variability using stochastic
distances. Then, by introducing this estimation in the diffusion
coefficient of the model, we observe that the edges of the
PolSAR image are preserved. In the experiments presented in
this paper we use g(s) = (1 + s2/λ2)−1 as edge-stopping
function, as proposed in [17].

We use a finite difference form of (4) to make the problem
discrete:

In+1
i.j − Ini.j

δt
=

∑
(k,l)∈N

gi,j + gi+k,j+l
2

Ini+k.j+l − Ini.j
h2

, (5)

where Ini.j ≈ I(n · δt, i · h, j · h) and N is the usual 4 point
neighborhood stencil. We observed, experimentally, that n =
100 iterations are enough to attain the asymptotic state of the
solution of the differential equation.

IV. EXPERIMENTAL SETUP

To test the proposed polarimetric filter, we have performed
experiments in both simulated and PolSAR data from actual
sensors. The results obtained were compared with a state-
of-the-art polarimetric non-local means filter [11] (SDNLM:
stochastic distance non-local means) which outperforms stan-
dard polarimetric filters such as the Refined Lee and the IDAN
(intensity-driven adaptive-neighborhood) filters.

The filter ability at reducing speckle and preserving the
mean values within homogeneous areas, is assessed by es-
timating the mean, the standard deviation and the related
ENL (equivalent number of looks). As it is known, mean
value (µ) must be preserved after filtering operation, whereas
standard deviation of speckle (σ) must be notably reduced.
As a consequence of that, ENL must increase. A complete
assessment of a despeckling filter shall include a measure of
edge preservation (through any of the wide metrics available).

We propose a novel method to assess the global performance
of the despeckling filter through the estimation of µ, σ, and
ENL not on selected ROIs (regions of interest), as it is the
standard approach, but taking into account that a groundtruth
is known for both simulated data and data from an opera-
tional sensor. We estimate µ, σ, and ENL on complete large
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classes patches. This new filter assessment naturally includes
a measure of edge preservation. Indeed, this departures from
the classical approach being extremely severe and robust.
Moreover, statistics over the whole image are also included,
by computing the mean preservation index (MPI):

MPI =

∣∣∣∣µS − µFµS

∣∣∣∣ , (6)

where µS denotes the mean of the original speckled PolSAR
image and µF for the filtered version.

In the following subsections we describe the results for
simulated data and observations from an actual PolSAR sensor.

A. Simulated Data

Fig. 1(a) shows the 240 × 240 pixels phantom with five
classes. It contains large patches and fine details. We simulated
observations for each class by sampling from the Wishart
distributions reported in [11] with L = 3. This procedure was
repeated 2000 times in order to obtain independent images. A
Pauli representation of one of them is depicted in Fig. 1(b).

(a) ROIs (b) Pauli representation

Fig. 1. Synthetic PolSAR image: (a) the 5 colors of the regions of interest
used to compute µ and σ, and (b) Pauli codification of a simulated sample.

We processed this dataset with the two polarimetric filters.
Fig. 2 shows the results obtained with one of the samples
by applying both polarimetric filters (Fig. 2(a) SDNLM and
Fig. 2(b) structure tensor filter). Visually, both filters provide
excellent results: speckle content has been notably reduced for
most classes and edges are well preserved. However, the result
from the proposed tensorial filter contains less speckle.

(a) SDNLM (b) Structure Tensor

Fig. 2. Result of applying: (a) SDNLM and (b) the Structure Tensor filter to
the synthetic PolSAR image

Table I presents mean values over the 2000 Monte Carlo
replications: µ and σ estimated for the three original bands
HH, HV, and VV. We include the percentage of variation for
µ and σ (∆µ and ∆σ, respectively), as well as the mean
preservation index (MPI) at the bottom of the table.

As observed, the SDLNM filter presents variations in the
mean preservation index, while σ is significantly reduced in
most of cases, as expected. However, the structure tensor
filter shows a more stable performance, with a reduction of
the variance in all the bands and classes, including a better
preservation of the mean. Note that for the SDNLM filter, there
are also cases with a larger than original speckle variance. This
is due to the novel assessment used that accounts for the edge
preservation. A visual analysis of the results obtained with
this non-local means filter shows that edges are not equally
preserved for all classes.

Table II shows the equivalent number of looks (ENL).
Although SDNLM obtains higher results, they are not uni-
form, with a worse performance especially in ROIs 4 and 5.
However, the structure tensor filter provides more stable values
for all regions (classes).

B. Data from an Operational Sensor

For the real case we have used the well-known AIRSAR 4
looks intensity PolSAR image from the region of Flevoland
in the Netherlands (Fig. 3(a)). Our ground reference consists
of 14 ROIs corresponding to different regions, such as crops,
urban or water (Fig. 3(b)); these ROIs are used to compute
µ, σ, and ENL for the three bands. With this, we are able
to evaluate the performance of the despeckling techniques in
areas with different polarimetric signatures. These ROIs have
been partially based on the ground truth presented in [18], to
which we have applied a preprocessing step to remove outliers.
Notice that, although just a number is shown near one region,
all the ROIs with the same color have been used to compute
the statistics.

(a) Pauli representation (b) ROIs

Fig. 3. Flevoland PolSAR image: (a) Pauli codification and (b) regions of
interest used to compute the statistics.

Fig. 4 shows the results of applying the SDNLM (Fig. 4(a))
and structure tensor (Fig. 4(b) filters to the actual PolSAR data.
In both cases, we have included in the figure a zoom of an
area with different crops. As observed, the SDNLM filter is
able to reduce speckle, but the structure tensor provides, in
general, a better preservation of the edges and fine details.

Table III follows the same structure as Table I, including
statistics for the mean and standard deviation, as well as the
mean preservation index at the bottom row. Again, the results
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TABLE I
COMPARATIVE RESULTS FOR SYNTHETIC POLSAR DATA: OBSERVED DATA, SDNLM FILTER AND STRUCTURE TENSOR FILTER

Filter Observed data (×10−4) SDNLM (%) Structure Tensor (%)

Band HH HV VV HH HV VV HH HV VV

ROI µ σ µ σ µ σ ∆µ ∆σ ∆µ ∆σ ∆µ ∆σ ∆µ ∆σ ∆µ ∆σ ∆µ ∆σ

1 36.99 21.35 5.00 2.89 62.01 35.80 2.70 −77.55 0.00 −60.13 −1.61 −79.47 0.64 −73.83 3.53 −62.55 −0.30 −74.48
2 56.00 32.33 18.00 10.39 55.00 31.76 −1.79 −83.94 0.00 −84.03 0.00 −82.2 −0.26 −69.03 −0.50 −68.70 0.01 −69.14
3 45.00 25.98 4.00 2.31 70.01 40.42 0.00 −82.62 0.00 −22.80 −1.41 −84.05 −0.20 −74.15 1.20 −69.88 −0.32 −74.24
4 11.00 6.35 1.00 0.58 24.00 13.86 9.09 −37.67 0.00 20.30 4.17 −72.27 0.66 −52.65 3.03 −50.48 −0.10 −52.85
5 9.00 5.20 2.00 1.15 13.00 7.50 11.11 20.18 0.00 110.30 7.69 −19.83 0.77 −70.10 0.40 −69.54 1.08 −69.64

MPI 31.35 7.69 39.34 4.22 0.00 1.77 0.00 0.00 0.00

TABLE II
ENL FOR THE SYNTHETIC DATA: SDNLM AND STRUCTURE TENSOR FILTERS

Filter Observed data SDNLM Structure Tensor

ROIs/Band HH HV VV HH HV VV HH HV VV

1 3.00 3.00 3.00 68.93 11.70 88.26 44.40 22.92 45.81
2 3.00 3.00 3.00 84.14 69.67 95.29 31.11 30.32 31.50
3 3.00 3.00 3.00 83.72 11.92 89.98 44.72 33.86 44.93
4 3.00 3.00 3.00 5.58 0.73 19.06 13.56 12.99 13.47
5 3.00 3.00 3.00 6.59 3.27 12.52 34.06 32.60 33.25

(a) SDNLM (b) Structure Tensor

Fig. 4. Results of applying (a) the SDNLM filter and (b) the Structure Tensor
one to Flevoland PolSAR image.

associated to each filter are presented as the percentage of
variation corresponding to the observed data. In most of the
ROIs of image processed by the structure tensor filter, the
mean preservation is below 0.8 % with slightly more stable
performance than in the SDNLM filter. Moreover, σ is notably
reduced in all cases. In this regard, as in the case of the
phantom image, the SDNLM filter presents larger values than
the original speckle variance, which reveals a lack of edge
preservation. Considering the whole image, as observed at the
bottom of the table, the mean preservation index is more stable
when the structure tensor filter is applied. Table IV shows the
associated ENL over each ROI presented in Fig. 3(b). The
results show that the structure tensor filter outperforms the
SDNLM in a large number of ROIs.

C. Implementation Details

Running our filter, coded in C++ with basic parallel tools,
on a 240 × 240 pixels image, takes approximately 8 s on an
Intel(R) Core(TM) i7-4870HQ CPU 2.5 GHz (16 GB RAM)
computer. The SDNLM filter is coded in Matlab. For the same
simulated case, the computational cost is around 70 s on the
same machine (using also basic parallel tools available in Mat-
lab). Both filters are available at http://ctim.ulpgc.es/demo111/.

V. CONCLUSIONS

In this paper, we have introduced a despeckling filter based
on a generalization of the structure tensor to the polarimetric
SAR case. The formulation of the filter includes a stochastic
distances to account for the data variability.

We performed experiments on simulated and data from an
actual sensor, and they were compared to a state-of-the-art
polarimetric filter: SDNLM. For the first case, 2000 images
with L = 3 were generated and analyzed. In the later, a well-
known PolSAR image was used. The filters were evaluated
by computing the mean and standard deviation in multiple
regions, as well as the associated equivalent number of looks
(ENL). Moreover, we included the mean preservation index
(MPI) in the whole image in order to evaluate the mean
preservation. We also introduced a new qualitative assessment,
which consists on estimating the metrics for large patches of
different classes (not user-selected ROIs). This enables the
evaluation of the filter performance in areas with different
polarimetric signatures in the actual data case, and includes
the edge preservation assessment naturally. Considering the
obtained results, the proposed filter shows promising out-
comes, outperforming the SDNLM in all the metrics evaluated.
Future research includes exploring other stochastic distances
and differences of entropies, as discussed in [19], [20].
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