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Abstract

The Sacramento Valley red fox Vulpes vulpes patwin of California is a newly named subspecies recently found to be
distinct both from other native red foxes and nearby introduced populations. The Sacramento Valley red fox
experienced a historical demographic bottleneck resulting in a critically small genetic effective population size, causing
concern over its current status and management requirements, yet little is known about its contemporary abundance,
demographic trajectory, or habitat use. The hot, arid Sacramento Valley contrasts starkly in climate and physiography
with the boreal habitats of other indigenous red foxes in western North America, indicating the need to obtain
information specifically on the habitat requirements of this subspecies. A 3-y effort to locate reproductive den sites
throughout the Sacramento Valley resulted in 42 independent dens, which we used to obtain preliminary information
on habitat use and to develop a distribution model for this subspecies, and 28 Sacramento Valley red foxes killed by
vehicles, which we used as independent data to test the models. Foxes were present significantly more than expected
in grasslands and less than expected in wetlands and flooded agriculture and also tended to occur in proximity to
human development, potentially as refuges from coyotes Canis latrans. We used Maxent to build predictive models.
The best model, which incorporated vegetation/land-use classes and proximity to human development, identified 24%
of the study area as predicted-presence habitat, which contained 76% of the den sites used to construct the model
and 89% of independent locations used to test the model. Our model greatly narrowed the area over which foxes are
predicted to occur and will facilitate future surveys to assess occupancy and ultimately abundance and population
trends.

Keywords: California; habitat; Maxent; Sacramento Valley red fox; species distribution model; Vulpes vulpes patwin

Received: July 20, 2015; Accepted: December 30, 2016; Published Online Early: December 2016; Published: June 2017

Citation: Sacks BN, Statham MJ, Wittmer HU. 2017. A preliminary range-wide distribution model for the Sacramento
Valley red fox. Journal of Fish and Wildlife Management 8(1):28–38; e1944-687X. doi:10.3996/072016-JFWM-057

Copyright: All material appearing in the Journal of Fish and Wildlife Management is in the public domain and may be
reproduced or copied without permission unless specifically noted with the copyright symbol &. Citation of the
source, as given above, is requested.

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the
U.S. Fish and Wildlife Service.

* Corresponding author: bnsacks@ucdavis.edu

Introduction

The Sacramento Valley red fox Vulpes vulpes patwin is
an ecologically distinct subspecies endemic to California
(Figure 1; Perrine et al. 2007; Sacks et al. 2010a). This fox
is one of four subspecies in a phylogenetically divergent

lineage native to the western United States. In contrast
to other native western red foxes, which occur in high-
elevation subalpine environments dominated most of
the year by snow cover, this subspecies is restricted to
elevations below 150 m on the floor of California’s
Sacramento Valley (bounded on three sides by moun-
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tains), where summer temperatures frequently exceed
408C and winter temperatures rarely dip below freezing.
The hot, arid environment in the Sacramento Valley is so
anomalous that for nearly a century these native red
foxes were presumed to stem from introduced foxes
from the eastern United States and were thus misclas-
sified as a nonnative species (Grinnell et al. 1937; Roest
1977; Jurek 1992; Lewis et al. 1999).

In addition to being a California native, new genetic
studies of historical and modern continent-wide samples
indicate that the Sacramento Valley red fox underwent a
recent genetic bottleneck, resulting in a current genetic
effective population size of ~50 (Sacks et al. 2010a).
Moreover, the genetic integrity of Sacramento Valley red
foxes has been maintained largely intact despite
introductions in the 1900s and subsequent spread of
feral red foxes (originating from fur farms), which
currently occupy most other low-elevation regions of
California (Sacks et al. 2016). Thus, despite the superficial
similarities in the appearance of native and nonnative
lowland red foxes and low levels of hybridization, native
red foxes in the Sacramento Valley have maintained their

genetic distinctiveness, possibly as a consequence of
social reproductive barriers (Sacks et al. 2011). At present,
however, little is known about the status of the
subspecies, including its census population size, threats
to its persistence, or basic habitat use (Sacks et al. 2010a).
Consequently, the Sacramento Valley red fox is currently
under consideration for listing as a California state
‘‘Mammal Species of Special Concern,’’ which indicates
the need for more information to assess potential
threatened or endangered status (S. Osborn, California
Department of Fish and Wildlife, pers. comm.).

As an essential step in this process, our goal in the
present study was to develop a model delineating the
predicted spatial distribution of the Sacramento Valley
red fox throughout its range. In 2007, we initiated a
study to determine the range extent and genetic
integrity of Sacramento Valley red foxes relative to an
adjacent red fox population comprised of individuals of
known nonnative ancestry (Moore 2009; Sacks et al.
2010a, 2010b, 2011; Converse 2012). As part of our
efforts, we documented the presence of reproductive
den sites and red foxes killed by vehicles (hereafter,

Figure 1. A Sacramento Valley red fox Vulpes vulpes patwin lapping water from a puddle near Capay, California, March 31, 2010
(photo by B.N. Sacks).
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‘‘road kills’’) of the native subspecies, which can be used
to describe and map habitats supporting foxes.

The most powerful approach to modeling species
distributions involves sampling random locations to
determine both presence and absence (Guisan and
Zimmerman 2000; MacKenzie et al. 2006). However,
when little is known about the correlates of a species’
distribution over large regions, presence-only data can
provide a more efficient and practical means of
developing preliminary distribution models, which, in
turn, can be used to guide more efficient and robust
occupancy surveys in the future (Guisan et al. 2006;
Peterman et al. 2013). When sample sizes allow,
likelihood-based resource selection functions (Johnson
et al. 2006) combined with information-theoretic meth-
ods of model selection and averaging (Burnham and
Anderson 2002) offer powerful presence-only approach-
es to statistically test selection of land-cover types and
estimate probabilities of occurrence (Royle et al. 2012).
However, when the goal is simply to produce qualitative
estimates of a species distribution, algorithmic approach-
es such as maximum entropy modeling in Maxent tend
to produce very similar results (Warton and Aarts 2013),
and may produce more realistic models with smaller
sample sizes (Phillips et al. 2004, 2006; Pearson et al.
2007; Wisc et al. 2008). Our intent was to use the modest-
sized set of available data to identify areas of predicted
red fox presence to provide the basis for more extensive
presence–absence surveys in the future (e.g., Guisan et
al. 2006). We therefore used Maxent modeling for this
purpose.

Study site

Our study area comprised the entire putative native
range of the Sacramento Valley red fox (~12,000 km2,
elevations , 150 m: 39821 036 00N to 40823 060 00N;
1228150W to 121825048 00W; Sacks et al. 2010b). Histori-
cally, the southern Sacramento Valley was a large flood
plain containing two major rivers (Feather and Sacra-
mento and their tributaries), both of which also
supported dense riparian forests up to 8 km wide
(Thompson 1961; Gibson 1975). To the west of the
Sacramento River riparian corridor were marshes lined on
either side by slightly raised grasslands. Today, the
landscape of the Valley is much changed through
anthropogenic alterations, such as levees containing
the rivers and tributaries as well as the conversion of .
90% of the historical riparian and ~ 65% of historical
grasslands to agricultural lands (Nelson et al. 2003). In
the lowest elevations of the valley (roughly associated
with the floodplain), flooded rice agriculture has
replaced naturally flooded lands. In more upland
portions of the valley, much of the grasslands have been
replaced by dry cropland, vineyards, and orchards.
Remnant grasslands remain where livestock are grazed,
although the composition of grass and forb species has
changed dramatically. Once dominated by native peren-
nial and annual grasses, grasslands are now dominated
by exotic annual species (Barbour et al. 2007). Overall,
the current composition of land-cover type in the

Sacramento Valley is approximately 36% dryland agri-
culture, 26% flooded agriculture, 29% grasslands, 5%
wetlands, and 4% woodlands.

Methods

Presence sampling
During 2007–2009, we documented the presence of

reproductive den sites and road kills of Sacramento
Valley red foxes, which provided the presence data for
this study. Specifically, we used reproductive den sites of
native red foxes (n¼ 42) as presence locations (Table S1,
Supplemental Material) to build models and used 28
opportunistically collected road-killed red foxes (Table
S2, Supplemental Material) to test model generality
(Sacks et al. 2010b). Use of reproductive den sites had
the advantage of providing precise locations known a
priori to be associated with reproductive habitat. The
road-killed red fox locations were collected throughout
the year and therefore expected to represent habitat
more broadly, including habitat used during fall and
winter dispersal, and, because they were tied to
roadways, to be influenced by different detection biases.

Ideally, our presence data would have reflected a
random sample from the population. However, the
extent of the study area, its domination by private land,
and the general sparseness of red fox occurrence
necessitated a haphazard approach to locating dens.
To detect native foxes, we established a web-based
reporting system (http://foxsurvey.ucdavis.edu) and uti-
lized local news outlets and environmental, agricultural,
and animal control organizations to advertise a request
for red fox sightings throughout the Sacramento Valley
and surrounding areas (Brasch 2013). Advertisements
were concentrated in early spring to maximize the
probability that red foxes were observed near den sites.
We performed den searches near reported sightings.
When active burrows or aboveground sightings of
neonatal pups were located, we recorded locations with
a global positioning unit. As described in detail
previously in a genetic study that utilized the same
specimens as the present study (Sacks et al. 2011), fresh
scats were collected from near den entrances for genetic
analysis (mitochondrial cytochrome b and D loop
sequencing, microsatellites) to confirm species and
population of origin. Likewise, road kills also were
genetically assigned previously (Sacks et al. 2011) to
assess population of origin. Because some den sites and
road-killed foxes on the periphery of the native range
were determined to reflect hybrids between native and
nonnative red foxes, in the present study, we used only
dens and road-killed foxes in our analysis for which
genetic assignment had previously indicated pure native
ancestry (Sacks et al. 2011).

Land-cover classification
Vegetation types were defined on the basis of the

California Central Valley wetlands and riparian geo-
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graphic information system (GIS) data layer, a vegeta-
tion coverage based on 1997 Landsat imagery (30-m
resolution), projected in Teale Albers (State System:
California Albers) NAD83 in Vector format (Tuffly and
Kilgore 1998). This layer included 14 vegetation classes,
pooled for the present study into the following six
classes: 1) wetland (seasonally flooded estuarine emer-
gents, permanently flooded estuarine emergents, tidal
estuarine emergents, seasonally flooded palustrine
emergents, permanently flooded palustrine emergents,
tidal flats), 2) flooded agriculture (flooded agriculture,
seasonally flooded agriculture), 3) dryland agriculture
(nonflooded agriculture, orchards/vineyards), 4) wood-
land (riparian woody, nonriparian woody), 5) grasslands,
6) ‘‘development’’ (other). Generally, development
indicated small buildings, such as barns, stables, sheds,
and houses. At localized spatial scales, vegetation
classes during the study period undoubtedly differed
in many cases from those reflected in the vegetation
layer composed 10 y before the start of our study; such
discrepancies may have had the effect of introducing
noise into our analyses, but are unlikely to have
introduced systematic bias into species distribution
modeling results.

Data coding in GIS
On the basis of historical accounts of the Sacramento

Valley red fox, we anticipated that grasslands reflected
prime foraging habitat (Grinnell et al. 1937). On the
basis of studies of red foxes in landscapes similar to
modern-day Sacramento Valley, we anticipated that
proximity to human development conferred protection
against coyotes (Dekker 1983; Sargeant et al. 1987;
Sargeant and Allen 1989; Gosselink et al. 2003). We used
ArcGIS (v10.0; Environmental Systems Research Insti-
tute, Redlands, CA) to project locations of red fox den
sites, road kills, and 34,500 randomly generated points
(i.e., a density of ~three points per square kilometer)
and coded them with respect to the three explanatory
variables: 1) vegetation class, 2) distance to grasslands
(DistGrass), and 3) distance to development (DistDev).
The layer containing the six habitat classes described
above was used for the categorical habitat variable. We
used the spatial analyst extension to create the two
distance-based layers as follows: we 1) selected the
habitat type from habitat layer and transferred it to its
own layer; 2) used the Euclidean distance function to
create a raster with each 100-m grid cell coded in terms
of its average distance to the habitat type; 3) reclassified
grid cells into six distance-class partitions (0–1 km, 1–2
km, . . ., . 5 km); 4) converted the reclassified raster to a
vector-based shapefile, and 5) projected the shapefile
into Teale Albers (NAD83). Creation of shapefiles from
models was similar except that we used ordinary kriging
to interpolate model projections of the 34,500 random
points into a raster (output cell size¼465 m), which was
then reclassified and projected into Teale Albers.

Land-cover use vs. availability
As a purely descriptive prelude to modeling, we

examined land-cover association via a comparison of
observed with expected numbers of den locations in the
six vegetation types using a chi-square goodness-of-fit
test under the null hypothesis: occurrence proportional
to availability (Zar 1999). Expected numbers were
calculated for each type by multiplying its proportional
contribution to the study area by the total number of
locations in the study area. Following an overall
significant deviation from expectation, each individual
vegetation class was tested by dichotomizing habitat
into that class vs. all other classes combined and tested
for significance with a Fisher exact test. The continuous
variables DistGrass and DistDev were similarly tested
using a Kolmogorov–Smirnov goodness-of-fit test (Zar
1999).

Maxent models
We used a maximum entropy-based modeling ap-

proach implemented in Maxent, considered to be the
most robust algorithmic technique when presence-only
data are used (Elith et al. 2006; Phillips et al. 2006; Phillips
and Dudı́k 2008). Note, we refer to vegetation class as a
single categorical variable with six ‘‘levels’’ (i.e., the
vegetation types indicated above) rather than as six
variables. DistGrass and DistDev were treated as contin-
uous variables. To account for the possibility of a bias
owing to higher detection probabilities near developed
areas, we built one model that excluded distance to
development (‘‘two-variable’’ model) for comparison
with the model including all three variables (‘‘full’’
model). Final models corresponded to averages across
10 replicate runs (10 random partitions). We followed
recommendations of Phillips and Dudı́k (2008) for model
specification (e.g., we used ‘‘hinge’’ features, and b ¼
0.5). We used model output in logistic format but did not
treat this in a literal sense as a quantitative estimate of
probability of occurrence (Yackulic et al. 2012), or even as
directly proportional to probability of occurrence, but
rather as an ordinal, qualitative index, which we
ultimately dichotomized (see below).

Model evaluation
We used both ‘‘internal’’ and ‘‘external’’ approaches to

validating models. Internal approaches involved perfor-
mance measures and random partitions for cross-valida-
tion procedures targeted to the den site presence points
used to train and build models, whereas external
approaches involved using spatially and functionally
independent data sets for building (training) and evalu-
ating (testing) models. For internal measures, we assessed
discriminatory ability of models on the basis of the area
under the (receiver-operating characteristic, ROC) curve
(AUC) with statistical significance based on cross-valida-
tion using 10 random partitions of the data; for each of
the 10 runs, we used 90% of the presence data to train
models and used the excluded 10% of the data for
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testing. The value of AUC indicates the potential accuracy
of a model in predicting a dichotomous outcome, in this
case whether foxes are present or not at a given location.
A model that predicts outcome no more accurately than
random has AUC ¼ 0.50, whereas a model that always
predicts correctly has AUC ¼ 1.00. Importantly, however,
even a model that perfectly captures the habitat
characteristics determining a species’ distribution can still
exhibit a relatively low AUC if, for example, not all suitable
habitat is occupied or if no particular cutoff in predicted
probability of occurrence corresponds well to a dichoto-
mization of the habitat. Thus, we used AUC primarily as a
relative means of comparing models rather than as an
absolute measure of a model’s utility. Similarly, the relative
contribution of each variable to the model was assessed
by ‘‘permutation importance,’’ which provides an index of
each variable’s influence on the model through a
comparison of the AUC resulting when the variable is
coded correctly with that when its values are permuted
among data (presence and background points), causing
the variable to be nonsensical (Phillips et al. 2006; Phillips
and Dudı́k 2008). The effects are then standardized across
variables so that their relative contributions sum to 1.

We used two external validation approaches. First, we
used the road-kill data, which were collected year-round
(including fall/winter dispersal), to test models built with
den-site data. These two data sets potentially reflected
different habitat variables, den sites corresponding
closely to reproduction, and road kills potentially more
reflective of dispersing individuals. Habitat models based
on life requisites associated with established home
ranges (e.g., reproduction) are not necessarily good
predictors of how individuals move across the landscape
during dispersal. Therefore, discrepancies would be
equivocal with respect to whether they reflected
biological differences or poor performance of the model.
On the other hand, high agreement between model
predictions and road-kill data would provide indepen-
dent validation of the model and an indication of the
model’s generality.

The second evaluation approach was to divide the
study area into northern and southern portions (divided
at latitude 38855048 00N to equalize numbers of den sites),
and use data from each portion to develop a model
extrapolated to the other portion. For this task, we used
the ‘‘mask’’ function implemented in Maxent and
projected the model onto the opposite portion of the
study area. The ability of the model trained in one
portion of the study area to accurately predict presence
in the other portion provided a conservative measure of
model accuracy unaffected by spatial autocorrelation
(e.g., Sacks et al. 2004). Extrapolative model performance
also provided an indication of the generality of the
model (Elith et al. 2010).

Model dichotomization
The application of models and our ability to compare

their performance against independent data sets (i.e., road

kills, den sites in other portion of study area) required us to
dichotomize model predictions into areas of predicted
presence vs. predicted absence. This task required identi-
fication of model-specific thresholds. Several criteria have
been used previously to select such thresholds, including
values that result in estimated 100% sensitivity (minimum
value among presence sites) or 90% sensitivity (10
percentile value from presence sites). Use of the minimum
value (100% sensitivity) is highly sensitive to sample size
(Pearson et al. 2007). Similarly, use of 90% (or any other)
sensitivity value is arbitrary and may not necessarily result
in the most useful predictions. When reliable absence data
are available, both sensitivity (1 minus the proportion of
presence sites omitted) and specificity (1 minus the
proportion of absence sites committed) can be used to
select a threshold based on maximizing discriminatory
value. Although specificity cannot be directly estimated
from presence-only data sets (as in our study), the
specificity of a model is inversely proportional to the
proportion of the study area (‘‘fractional area’’) where
presence is predicted (Phillips et al. 2006). More intuitively,
a model that minimizes the proportion of the study area
where presence is predicted while maximizing inclusion of
known-presence sites is potentially more informative than
a model that achieves a similar sensitivity by predicting
presence in most of the study area (Engler et al. 2004).
Therefore, we chose threshold values for each model on
the basis of maximizing the difference between fractional
area and estimated sensitivity (proportion of presence sites
included).

For the purposes of evaluating the extrapolated
models against the model trained on all den-site data,
we quantified correlations of their dichotomized predic-
tions using a phi (u) coefficient, which is analogous to a
Pearson correlation coefficient (ranging from �1 to 1),
but for use on a 2 3 2 matrix (Zar 1999). For these
comparisons, we used threshold values for the extrap-
olated models that resulted in the same fractional values
as the model trained on all data. This procedure, also
referred to as the ‘‘equalized predicted area test’’
(Phillips et al. 2006), ensured that any disagreement
between models stemmed from qualitative differences
rather than as an artifact of the particular threshold
selection. We then composed GIS layers from the
difference between model predictions.

Results

Land-cover associations of den sites
The red fox den sites occurred in vegetation classes

disproportionately to the composition of the study area
(Figure 2; Figure S1, Supplemental Material; v2

3 df¼ 9.1, P
¼ 0.028). In particular, den-site occurrences exhibited a
higher-than-expected correspondence to grasslands
(50% use vs. 29% availability) and a lower-than-expected
correspondence to flooded agriculture (5% use vs. 26%
availability), both of which differed significantly from
random expectations (P ¼ 0.028, 0.005, respectively).

Sacramento Valley Red Fox Distribution Model B.N. Sacks et al.
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Additionally, den sites tended to occur closer than
expected to grasslands and development (Figure 2), but
only the latter association was statistically significant (P
, 0.001).

Maxent models

The full Maxent model (including all three variables)
performed better than the two-variable (i.e., excluding
DistDev) model (Table 1). In particular, using a 0.38

threshold in the full model achieved an estimated
sensitivity of 76% (i.e., included 76% of presence
locations) and encompassed only 24% of the study area
(52% difference), whereas a threshold of 0.33 in the two-
variable model yielded a slightly higher estimated
sensitivity (89%) but also encompassed a much higher
proportion (59%) of the study area (30% difference). In
general, the differences in the two models were minimal,
and both models ranked habitats similarly (Figure 3;
Figure S2, Supplemental Material). The contribution of
DistDev in the full model was estimated to be two-thirds
as important as vegetation class (Table 1).

A total of 23 of the 28 road kills (83%) occurred in the
24% of the study area where the full model predicted red
fox occurrence, whereas 27 of them (96%) occurred in
the 59% of the study area where the two-variable model
predicted presences (Figure 4). In both cases, these
proportions were higher than those associated with the
den-site data set used to train the models in the first
place (i.e., 76%, 89%, respectively). Superimposing the
full and two-variable models indicated habitat tracts
predicted by the two-variable but not the full model,
which can provide the basis for future occupancy surveys
to test between these models (Figure 5).

Extrapolations of models and tests with independent
presence locations

The use of southern and northern portions of the
study area to train models (full model in all cases) for
extrapolation to the opposite portion of the study area
provided a spatially independent test of the modeling
approach. The model based on den sites from the
northern portion of the study area performed extremely
well as evaluated against the presence sites (i.e., den þ
road kill) in the southern portion of the study area. In
particular, 97% of presence sites in the southern portion
of the study area were contained in the 29% of that
region falling above the model probability threshold
(68% difference between sensitivity and fractional area).
The model based on den sites from the southern portion
of the study area performed less well as evaluated
against the presence sites in the northern portion of the
study area. In particular, 90% of presence sites in the
southern portion of the study area were contained in the
50% of that region falling above the model probability
threshold (40% difference between sensitivity and
fractional area). The correlations between the original
full model (i.e., trained on all den sites) and the

Figure 2. Observed vs. expected (if random) frequency
distributions of Sacramento Valley red fox Vulpes vulpes patwin
den sites with respect to (A) five habitat classes and (B) distances
from the nearest mapped human structure. Expected numbers
were proportional to corresponding classifications of 34,500
randomly generated points. * P , 0.05, ** P , 0.01. Data were
collected during 2007–2009 in the Sacramento Valley, California.

Table 1. Summary of Maxent Sacramento Valley red fox Vulpes vulpes patwin distribution models, including the percent contribution
of each variable to the model (permutation importance), area under the (receiver-operating characteristic, ROC) curve (AUC), and
cross-validated AUC (CV-AUC). Standard deviations among 10 random partitions (90% training, 10% test) are shown in parentheses.
Data for models were collected during 2007–2009 in the Sacramento Valley, California.

Permutation importance (%)

Model Habitat class DistGrass DistDev AUC CV-AUC

Full model 57 3 40 0.76 (0.01) 0.71 (0.12)

Two-variable model 88 12 — 0.70 (0.01) 0.68 (0.10)

Sacramento Valley Red Fox Distribution Model B.N. Sacks et al.
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extrapolated models also were higher for the north-to-
south (u ¼ 0.96) than the south-to-north (u ¼ 0.72)
model.

Discussion

The purpose of our study was to develop preliminary
distribution models for the Sacramento Valley red fox for
use in guiding future occupancy surveys. The areas
under the ROC curves were not especially high (~70%),
suggesting that the ability of the models to predict
occurrence in any particular location was limited.
However, the best test of the accuracy of the models
in an operational sense was our attempt to extrapolate
models trained on one half of the range to predicting
presence in the other half of the range, both of which
performed reasonably well. The model built from the
northern data performed better when extrapolated to
the southern portion of the range than did the reverse
operation. Although the sample sizes used to build each
model were equivalent, the northern portion of the
Valley was larger in terms of area and, more important,
better represented by the range of the vegetation
classes, especially flooded agriculture. Taken together,

however, these tests bode well for the utility of the
models built using the complete data set.

The predictive value of the model depends not only
on the accuracy of the models with respect to capturing
the selected components of habitat, but also on the
extent to which typically selected habitats are occupied
(and typically unselected habitats unoccupied), which
can only be determined through independent future
surveys guided by the model (e.g., Peterman et al. 2013).
Such surveys would produce an estimate of occupancy
within predicted-presence (and predicted-absence) hab-
itat, which also would provide the basis to estimate the
abundance of Sacramento Valley red foxes from locally
obtained data on home range and family group size.
Additionally, future surveys would also enable detection
of any hidden biases associated with the present models
(see below).

In terms of habitat selection, our findings (i.e.,
selection for grasslands) were broadly consistent with
historical records indicating that red foxes denned in
excavated California ground squirrel Otospermophilius
beecheyi burrows on uncultivated ridges and avoided the
lower-elevation areas more prone to seasonal flooding
(Grinnell et al. 1937; Sacks et al. 2010b). Additionally, a
demographic decline in Sacramento Valley red foxes
during the past century and a half (Sacks et al. 2010a)

Figure 3. Maxent models of Sacramento Valley red fox Vulpes vulpes patwin distribution; the full model included vegetation type,
DistGrass, and DistDev, and the two-variable (2-var) model included only vegetation type and DistGrass. Data were collected during
2007–2009 in the Sacramento Valley, California.
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coincided with the loss of 65% of the historical
grasslands from the Sacramento Valley (Nelson et al.
2003). The tendency for Sacramento Valley red foxes to
establish den sites closer to human development was
noteworthy. On the one hand, our use of voluntary
reports to guide us to den sites could have introduced a
bias, whereby human presence and perhaps land use (if
correlated with human attitudes and willingness to
report) influenced the probability that we would
discover a given den (Brasch 2013). On the other hand,
it is unlikely that any such bias alone was sufficient to
explain the apparent selection. In contrast to sighting

reports of free-ranging foxes, road kills were subject to
many more eyewitnesses and probability of their
detection was unlikely to be dependent on the
surrounding habitat (i.e., proximity to human structures).
Fine-scale observations further support the selection of
human development by Sacramento Valley red foxes. For
example, we documented several dens under sheds or
woodpiles, in culverts, road cuts, and between buildings
(Sacks et al. 2010b). Radiocollared individuals were also
frequently located in edge habitat sandwiched between
buildings and agricultural fields and tended to avoid
areas farther from human structures unless heavy cover

Figure 4. Dichotomized Maxent models of Sacramento Valley red fox Vulpes vulpes patwin distribution in reference to den sites
(black dots) used to create models (A, C) and road-killed foxes (black dots) that were independently collected (B, D); models included
vegetation type, DistGrass, and DistDev (A, B) or vegetation type and DistGrass only (C, D), and were dichotomized into predicted
presence (gray) and absence (white) on the basis of threshold logistic probabilities that maximized the difference between estimates
of sensitivity and proportion of study area defined as ‘‘suitable habitat’’ (fractional area). Data were collected during 2007–2009 in
the Sacramento valley, California.
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was nearby (B.N. Sacks, unpublished data). We hypoth-
esize that importance of human structures in the
contemporary Sacramento Valley landscape relates to
predation refuges from coyotes, a larger, sympatric, and
competitively dominant canid. Coyotes compete with
red foxes both through exploitation and interference and
are known to be important determinants of red fox
distribution and abundance in other parts of their range
(Dekker 1983; Sargeant et al. 1987; Sargeant and Allen
1989; Gosselink et al. 2003; Van Etten et al. 2007; Levi and
Wilmers 2012). Nevertheless, we developed a model
excluding proximity to human development specifically
so that future surveys can be stratified in terms of areas
where both models predict occurrence vs. where the
two-variable but not the full model predicts occurrence,
enabling independent, unbiased assessment of the
relationship of human development to fox occurrence.

Our study was a broad-brush attempt to characterize
and delineate potential habitat for the Sacramento Valley
red fox. Our findings considerably narrowed the area
within the Sacramento Valley over which native foxes are
predicted to occur, facilitating subsequent steps in
assessing conservation status, determining threats, and
monitoring. Chief among these steps will be to system-

atically or randomly survey predicted-presence habitat to
assess occupancy and to use these results in combination
with estimates of home range and group size to estimate
the population abundance of this endemic subspecies.

Supplemental Material

Please note: The Journal of Fish and Wildlife Management
is not responsible for the content or functionality of any
supplemental material. Queries should be directed to the
corresponding author for the article.

Table S1. Locations and land-cover-type coding of 42
Sacramento Valley red fox Vulpes vulpes patwin den sites
used in Maxent modeling, Sacramento Valley, California,
2007–2009. Location data are provided in Excel format in
decimal degrees expressed to two decimal points for
limited precision to protect privacy of landowners.

Found at DOI: http://dx.doi.org/10.3996/072016-
JFWM-057.S1 (11 KB XLSX),

Table S2. Locations of 28 native Sacramento Valley
red fox Vulpes vulpes patwin road kills used to test

Figure 5. Difference in probability of Sacramento Valley red fox Vulpes vulpes patwin presence predicted by the Maxent model using
all three variables vs. the two-variable model (i.e., excluding development). The values represent differences in logistic probabilities
(full � two-variable). Dark blue areas correspond to grasslands not immediately adjacent to development where the two-variable
model, but not the full model, predicts high probability of red fox occurrence. Inset shows locations of den sites (open circles) and
road-killed red foxes (filled circles) along with a hexagonal (10.4 km2) grid that can provide the basis for future validation surveys.
Data were collected during 2007–2009 in the Sacramento Valley, California.
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Maxent models, Sacramento Valley, California, 2007–
2009. Location data are provided in Excel format in
decimal degrees.

Found at DOI: http://dx.doi.org/10.3996/072016-
JFWM-057.S12 (10 KB XLSX).

Figure S1. Locations of 42 Sacramento Valley red fox
Vulpes vulpes patwin den sites (black circles) and 28 road
kills (red circles) in reference to four land-cover types
used in Maxent modeling, Sacramento Valley, California,
2007–2009.

Found at DOI: http://dx.doi.org/10.3996/072016-
JFWM-057.S3 (100 KB PDF).

Figure S2. Locations of 70 Sacramento Valley red fox
Vulpes vulpes patwin den sites and road kills (black
circles) in reference to geographic landmarks and two
Maxent models predicting distribution in the Sacramento
Valley, California: (A) the full model, based on vegetation
type, distance to grasslands, and distance to develop-
ment, and (B) a two-variable model, based on vegetation
type and distance to grasslands (i.e., excluding distance
to development). All data shown were collected during
2007–2009.

Found at DOI: http://dx.doi.org/10.3996/072016-
JFWM-057.S4 (206 KB PDF).
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