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Abstract

Remotely activated cameras are increasingly used worldwide to investigate the distribution, abundance and behaviour of
animals. The number of studies using remote cameras in urban ecosystems, however, is low compared to use in other eco-
systems. Currently, the time and effort required to classify images is the main constraint of this monitoring technique.
To determine whether, or not, citizen science might help overcome this constraint, we investigated the engagement, accu-
racy and efficiency of citizen scientists providing crowd-sourced classifications of animal images recorded by remote
cameras in Wellington, New Zealand. Classifications from individual citizen scientists were in 84.2% agreement with the
classifications of professional ecologists. Aggregating the classifications from three citizen scientists per image, and exclud-
ing false triggers and unclassifiable classifications increased their overall accuracy to 97.6%. Classifications by citizen
scientists also improved if animal movement was highlighted in the images. The likelihood of citizen scientists correctly
classifying images was influenced by their previous accuracy, their self-assessed confidence, and the species reported.
Weighting the citizen scientist classifications based on their ability to correctly identify animals reduced from 3 to 2 the
number of classifications required per sequence to classify >95% of the photographs containing cats. Citizen science is an
accurate and efficient approach for classifying remote camera data from urban areas, where most of the animals are famil-
iar to the participants. We demonstrated how appropriate tools and accounting for the accuracy of citizen scientists, allows
project managers to maximise the effort of citizen scientists while ensuring high-quality data.
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Introduction

Remotely activated cameras are increasingly used worldwide to
investigate behaviour, distribution and abundance of an array
of animals (Meek et al. 2014). The availability, efficiency and
user-friendly characteristics of remote cameras have contrib-
uted to calls for the establishment of a global network for moni-
toring biodiversity (Steenweg et al. 2017). The number of
ecological studies using remote cameras in urban areas, how-
ever, is low compared to use in other ecosystems. For example,
a literature search in June 2017 using the Web of Science Core
Collection database for documents published between 2010 and
2016 containing the words ‘Camera trap’, ‘Camera trap forest’

and ‘Camera trap urban’ returned 2259, 713 and 45 publications,
respectively.

The low number of urban studies using remote cameras is
surprising given their potential to unravel critical ecological re-
search questions. For example, remote cameras may assist ur-
ban ecologists to better understand the impact that invasive
species have on native biodiversity, due to their ability to simul-
taneously monitor a wide range of animal species across multi-
ple sites and over long periods of time (Elmqvist et al. 2013;
Anton, Hartley, and Wittmer 2018). Ecologists are already using
remote cameras under a wide range of conditions including
harsh physical environments and locations with limited acces-
sibility (Steenweg et al. 2017). The versatility of this monitoring
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technique facilitates cross-ecosystem studies that could eluci-
date how pets, human disturbances and other elements com-
monly found in urban environments influence community
assemblies, predator–prey dynamics and animal behaviour
(Faeth et al. 2005; Kikillus et al. 2017).

A potential constraint on the use of remote cameras, how-
ever, is the large number of images they may collect and the
time and effort required to classify the species present in the
images. Remote camera data often include poor quality images
(e.g. blurry, pixelated, out of focus and over/underexposed pic-
tures), images of animals camouflaged with the surrounding
environment and partial views of animals (Meek et al. 2014;
Swanson et al. 2016). Using appropriate camera deployment,
settings and models can minimise the number of poor quality
images (Nazir et al. 2017). False triggers, cameras triggered by
objects other than target animals, is another challenge that re-
searchers face while classifying remote camera data
(Welbourne et al. 2016). False triggers can rapidly increase the
number of images requiring classification to the point of
unmanageable levels (Swinnen et al. 2014). Despite the recent
improvement in algorithms trained to automatically identify
false triggers or the animals recorded in the photographs
(Norouzzadeh et al. 2017), human validation is still required for
collating data from remote cameras (Kumar, Manohar, and
Chethan 2015; He et al. 2016).

Citizen science, involving the general public in scientific re-
search, is increasingly used for classifying large amounts of
footage or photographs provided by remote sensing devices
(Chandler et al. 2017). Data quality, a major concern in citizen
science, can be maximised if citizen scientists are provided with
the appropriate tools to accomplish their task (Ellwood,
Crimmins, and Miller-Rushing 2017). For example, Horn et al.
(2015) reported that the interface used for displaying photo-
graphs influenced the accuracy of citizen scientists to classify-
ing common bird species found in North America. To ensure
high-quality data, the performance of citizen scientists is often
compared to that of professionals (Kosmala et al. 2016; McShea
et al. 2016). If there are differences between the two groups,
managers can apply an array of tools to achieve similar results
to those provided by professionals (Lewandowski and Specht
2015; Kosmala et al. 2016).

In remote camera studies, the number of citizen scientists
required to accurately classify the data is influenced by the
goals and resources of the project (Swanson et al. 2016). For ex-
ample, remote camera studies of rare or elusive species may re-
quire higher accuracy levels than studies looking at the
community composition. Independent of project-specific char-
acteristics, agreement among citizen scientists is considered a
versatile tool for increasing the accuracy of citizen scientists
(Swanson et al. 2016). The effort of citizen scientists, however,
might be maximised by taking into account metadata associ-
ated with the individual citizen scientists and their past classifi-
cations (Kosmala et al. 2016). For example, participation
experience (Kelling et al. 2015), expertise (Pocock et al. 2015), age
(Delaney et al. 2008) and how confident citizen scientists are
with their prediction (Crall et al. 2011) have previously been
linked with the ability of citizen scientists to correctly identify
animal species in similar projects. Due to the lower suite of
mammalian species compared to urban ecosystems elsewhere
(Baker and Harris 2007; Morgan, Waas, and Innes 2009;
Widdows, Ramesh, and Downs 2015; Anton, Hartley, and
Wittmer 2018), remote camera data collected in urban New
Zealand are well suited to investigate algorithms for citizen

scientists to reach the same levels of classification accuracy as
professionals.

To determine whether, or not, citizen science may overcome
the time and effort required to classify remote camera data
from urban areas, we investigated the engagement, accuracy
and efficiency of citizen scientists classifying remote camera
data collected in Wellington, New Zealand.

Methods
Data collection

We used 4466 sequences of still photographs from remote cam-
eras deployed at forested areas and private backyards in
Wellington, New Zealand. Remote cameras (Bushnell 119537)
were deployed for 3 months in 2014, as described by Anton,
Hartley, and Wittmer (2018), and captured a sequence of three
photographs per trigger over a 2-s period (henceforth a set of
three images equals one sequence).

We uploaded all the sequences to a citizen science website
(www.identifyanimals.co.nz) open to any member of the public.
We promoted the website via local newspapers, social media
and school visits. Upon arriving at the website, participants
were required to create an account (username and password)
before they could start classifying sequences. Participants also
needed to report their age (years) and self-assess their knowl-
edge of invasive mammals in New Zealand as poor, basic, good
or excellent. Once registered, citizen scientists were able to clas-
sify the sequences into 1 of 15 categories available and report
how confident they were with each classification (unsure, rea-
sonable or very confident) (Fig. 1). Citizen scientists were also
able to use a comment box on each sequence to classify the ani-
mal further (e.g. to the species level) or to report any concerns.
The website included a tutorial page and a classification guide
with ‘how-to-use’ instructions, but citizen scientists were not
required to complete any training before starting to classify the
sequences.

To estimate the accuracy and efficiency of citizen scientists,
all sequences were classified by at least three citizen scientists,
and by at least two different experts (i.e. professionals with for-
mal qualifications in the field of ecology). If there was disagree-
ment among expert classifications, the sequence was classified
by Victor Anton.

For 1671 randomly selected sequences, we also provided a
fourth image in which areas of change between the three origi-
nal images were highlighted in purple in order to draw attention
to potential animal movement in the sequence (Supplementary
Appendix S1). This was achieved using the functions
‘ImageChops.difference’ and ‘Image.blend’, from the Python im-
age library. We then compared the classification accuracy of
users for sequences with and without the fourth image of high-
lighted movement.

Data analysis

We conducted all statistical analyses in R version 3.1.2 (R Core
Team 2016). To simplify the interpretation of the results, we ex-
cluded 2 of the 4466 sequences from the accuracy and efficiency
analyses because, based on the comments provided by experts
and citizen scientists, these sequences contained two different
animals (i.e. hedgehogs and cats) and the user interface only al-
lowed one option to be chosen.
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Engagement of citizen scientists
To study how the age and self-assessed ecological knowledge of
the citizen scientists influenced engagement with the project,
we fitted a generalised linear model. Engagement, the response
variable, was measured as the total number of classifications
provided by each citizen scientist. The explanatory variables
were age and self-assessed ecological knowledge of the citizen
scientist. We considered variables with P< 0.05 as significantly
correlated with the number of classifications provided by each
citizen scientist.

Accuracy of citizen scientists
We randomly selected three citizen scientist classifications per
sequence and estimated the accuracy of individual citizen sci-
entists and of their aggregated classifications. To estimate the
accuracy of individual citizen scientists, we compared each
classification to those provided by experts, and calculated the
true positive rate (TPR or sensitivity) and positive predictive
value (PPV) (Table 1). To estimate the accuracy of the aggregated
classifications of citizen scientists, we identified the aggregated
classification for each sequence based on the category with the
highest number of citizen scientist classifications. If all three
classifications were different, we randomly selected one of

them as their aggregated classification. We considered a classi-
fication being ‘correct’ if the aggregated classification provided
by citizen scientists agreed with the classification provided by
experts.

We tested whether, or not, highlighting areas of movement
across the 3 images of 1672 sequences influenced the ability of
citizen scientists to make correct classifications. We randomly
selected three citizen science classifications per sequence and
per treatment (with and without the movement highlighted)
and used Fisher’s exact tests to evaluate statistical differences
in the number of correct vs incorrect individual citizen scientist
classifications between treatments.

We used generalised linear mixed models (GLMM) to investi-
gate what metadata best predicts the likelihood of a citizen sci-
entist making a correct classification. We ran the models using
two-thirds of the sequences uploaded to the website (n¼ 2978).
We used the complementary one-third of sequences to validate
the efficiency of these models, as explained later. The response
variable of the model was the accuracy of the classification pro-
vided by an individual citizen scientist (correct vs incorrect), for
which we used the binomial family with log link. The explana-
tory variables of the model were age of the citizen scientists,
their knowledge of New Zealand invasive mammals, the

Figure 1: Snapshot of the interface of www.identifyanimals.co.nz used to classify the events. Citizen scientists could enlarge any of the three photographs (bottom of

the screen) of each event. Citizen scientists needed to select one category and their confidence level (right-hand side of the screen) before submitting their classifica-

tion. Citizen scientists were also able to classify the animal to the species level or report any anomaly using the comment box.

Table 1: Confusion matrix of the citizen scientist and expert classifications used to calculate the sensitivity and PPV of citizen scientists for cat-
egory i (e.g. i ¼ deer, pig, dog, etc.)

Expert classifications
of category i

Expert classifications
different to category i

Citizen scientist classifications of category i a b
Citizen scientist classifications different to category i c d

Sensitivity (or TPR) was calculated as: a/(aþ c). PPV was calculated as: a/(aþb).
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confidence level they reported for the classification, previous
accuracy (PPV) and number of classifications submitted by each
citizen scientist. We estimated the previous accuracy of citizen
scientists to classify each taxon category because the animals
recorded in the photographs influence the ability of citizen

scientists to correctly classify them (McShea et al. 2016). We cal-
culated the previous accuracy of a citizen scientist per category
for those categories (species) in which the citizen scientist had
classified at least two previous sequences. For those citizen sci-
entists that had not classified at least two sequences of that cat-
egory, we used the average accuracy that all citizen scientists
had in classifying that category (species). To improve numerical
stability, we subtracted the mean of the variables age, previous
accuracy and number of sequences classified per participant
and divided them by their corresponding standard deviation
(Gelman and Hill 2007). After running a Tukey’s Honest
Significant Difference, we simplified the variable ecological
knowledge into ‘poor or basic’, ‘good’ and ‘excellent’ due to the
lack of significant differences (P> 0.05) between citizen scien-
tists with poor or basic ecological knowledge and their accu-
racy. We also used the category reported by the citizen
scientists as a random effect because the ability of citizen sci-
entists to correctly classify remote camera data is species-
specific (McShea et al. 2016). We determined the best model to
predict the likelihood of a citizen scientist being correct using

Figure 2: Engagement of citizen scientists according to (a) their age and (b) ecological knowledge. Engagement of citizen scientists is represented as the number of clas-

sifications submitted per citizen scientist. The loess method was used to estimate the mean number of classifications submitted per citizen scientist and the corre-

sponding 95% confidence intervals. Previous knowledge of New Zealand invasive mammals was used to represent the influence that ecological knowledge of citizen

scientists had in the number of classifications submitted. Boxes in the boxplots represent the median and interquartile ranges.

Table 2: Results of the GLM predicting number of classifications pro-
vided per citizen scientist based on their age and ecological knowl-
edge (poor, basic, good or excellent)

Variable Estimate of b SE P-value

Intercept 2.42 0.61 <0.001***
Age 0.03 0.01 <0.001***
Ecological knowledge (basic) 0.21 0.61 0.74
Ecological knowledge (good) 0.21 0.60 0.72
Ecological knowledge (excellent) 0.87 0.65 0.18

The marginal R2 of the model was 0.14.

***P <0.001.

Figure 3: Performance of citizen scientists in classifying remote camera data collected from Wellington, New Zealand into 13 different categories. Performance was

based on the comparison (sensitivity and PPV) between the aggregate classifications of three citizen scientists and at least two experts per event. Sensitivity is the pro-

portion of events classified by experts as category ‘i’ that were correctly classified by citizen scientists, PPV is the proportion of events classified by citizen scientists as

category ‘i’ that were correctly classified (see Table 1). Taxa are ordered according to average body size, from largest to smallest.

4 | Journal of Urban Ecology, 2018, Vol. 4, No. 1

Downloaded from https://academic.oup.com/jue/article-abstract/4/1/juy002/4947839
by Victoria University of Wellington user
on 21 March 2018



an information-theoretic approach to avoid over-fitting and to
acknowledge uncertainty in model specification (Burnham and
Anderson 2002). We generated all possible models (n¼ 16) and
ranked them based on the Akaike’s Information Criteria (AIC).
We then averaged the models within four AIC of the ‘best’
model, using the MULMN package, to determine a parsimoni-
ous meta-model with the best overall support from the data
(Arnold 2010; Barton 2015). We determined the influence of
each variable for predicting the likelihood of a citizen scientist
being correct based on the parameter estimates and standard
errors of the averaged model. We used the marginal and condi-
tional R2 (Nakagawa and Schielzeth 2013) to estimate goodness
of fit of the meta-model.

Efficiency of citizen scientists
We determined whether weighting the classifications, based on
metadata associated with the accuracy of citizen scientists,
influenced the number of citizen scientists required to correctly
classify sequences containing invasive mammals commonly
found in urban areas of New Zealand. Following Morgan, Waas,
and Innes (2009), we considered the following species as com-
mon mammalian species of New Zealand urban areas: possums
(Trichosurus vulpecula), cats (Felis catus), mustelids (Mustela spp.),
hedgehogs (Erinaceus europaeus), rats (Rattus spp.) and mice (Mus
musculus). Based on expert classifications we selected one-third
of the sequences containing these invasive species to validate
whether weighting the classifications had an effect on the sen-
sitivity (TPR) of citizen scientists’ classifications.

We weighted the classifications provided by citizen scien-
tists based on the likelihood that each citizen scientists had of
being correct, as predicted by the averaged GLMM, using the
predict function from the ‘lme4’ package (Bates et al. 2015). We,
then, calculated the most likely classification based on the pre-
dicted accuracy of each citizen scientist. For example, if three
citizen scientists provided classifications (‘cat’, ‘cat’ and ‘pos-
sum’) with modelled individual accuracies of 60%, 60% and 90%,
respectively, possum was selected as the aggregated classifica-
tion because the likelihood of getting this set of classifications if
the image contained a possum (0.4� 0.4� 0.9) was greater than
the likelihood of getting these classifications if the image con-
tained a cat (0.6� 0.6� 0.1). We used Fisher’s exact tests to com-
pare the proportion of sequences correctly classified by citizen
scientists based on two and three weighted and unweighted
classifications.

Results
Engagement of citizen scientists

A total of 504 citizen scientists submitted 24 956 classifications
over the 7 months that our website was active. The classifica-
tions submitted by the top 10 contributors represented 34.5% of
the total classifications received. The number of classifications
that citizen scientists submitted was significantly correlated
with their age (P< 0.001) but not with their self-assessed knowl-
edge of invasive mammals (Table 2). Citizen scientists between
35 and 55 years old provided more classifications than younger
or older volunteers (Fig. 2).

Accuracy of citizen scientists

Classifications from individual citizen scientists were in 84.2%
agreement with the classifications provided by experts. The ac-
curacy of individual citizen scientists was influenced by theT
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animal recorded in the photographs (Fig. 3); for example, citizen
scientists correctly classified >90% of the sequences containing
deer or cats but <70% of the sequences containing mustelids or
mice. Citizen scientists often misclassified, as false triggers, se-
quences that experts were unable to classify and those contain-
ing birds (48.4% and 14.4%, respectively) (Table 3). Excluding the
false triggers and unclassifiable classifications, individual citi-
zen scientists were in 97.0% agreement with the classifications
provided by experts.

The aggregated classification of citizen scientist increased
the number of images correctly classified. For example, the ag-
gregated classification of three citizen scientists was in 87.8%
agreement with the classification of experts, 3.6% more than
the classifications of individual citizen scientists. Excluding
false triggers and unclassifiable sequences, the aggregated clas-
sifications of citizen scientists were in 97.6% agreement with
the classification of experts.

The number of citizen scientists that used the comment box
to classify the animal to species level was influenced by the ani-
mal recorded in the photograph. The proportion of citizen sci-
entists that classified lagomorphs, mustelids, birds and rats to
the species level were 9.4%, 18.7%, 17.6% and 3.7%, respectively
(Supplementary Appendix S2).

Highlighting areas of movement in the photographs had a
positive effect on the ability of citizen scientists to correctly
classify sequences. The sensitivity of the aggregated classifi-
cation of three citizen scientists was, on average, 7.8 60.6%
greater for those sequences with the movement highlighted
compared to sequences without the movement highlighted. In
particular, highlighting areas of movement significantly im-
proved identification of hedgehogs, birds, mice and false trig-
gers (Fig. 4).

The classification accuracy of individual citizen scientists
may be predicted by their self-declared confidence with the
classification, and their previous accuracy. Based on the meta-
model used to predict the likelihood of being correct, citizen
scientists that were ‘reasonably confident’ and ‘very confi-
dent’ with their classification were 12.9 61.8% and 36.9 61.5%
more likely (P< 0.05) of being correct compared to those
unsure with their classifications (Table 4). Citizen scientists
were also more likely to correctly classify a sequence (P< 0.05)
if they had been accurate in classifying other sequences of the
same category previously. Previous accuracy and the

likelihood of a citizen scientist being correct followed a linear
relationship (Fig. 5).

Efficiency of citizen scientists

The number of citizen scientists required to correctly classify re-
mote camera data was influenced by the desired levels of accu-
racy and by the species of interest. For example, one citizen
scientist per sequence was sufficient to correctly classify >90% of
the sequences containing images of possums or cats (Table 5).

Weighting the citizen scientist classifications based on their
previous accuracy and self-assessed confidence levels did not
statistically increase the accuracy of classifying common inva-
sive mammals of New Zealand urban areas. However, the clas-
sification accuracy for these species never decreased after
weighting classifications. Furthermore, depending of the de-
sired accuracy levels, weighting the classifications reduced the
number of citizen scientists required per sequence. For exam-
ple, weighting the citizen scientist classifications reduced from
3 to 2 the number of classifications required per sequence to
classify >95% of the photographs containing cats.

Figure 4: Comparison between the accuracy of citizen scientists to correctly classify events, with and without the movement highlighted, into 13 categories. Accuracy

(sensitivity) was based on the comparison between the aggregated classifications of three citizen scientists and at least two experts per event. The events were col-

lected using remote cameras from Wellington, New Zealand. Error bars represent standard errors; significant differences in the accuracy between events with and

without movement highlighted are represented as *, ** and *** (P < 0.05, < 0.01 and < 0.001, respectively).

Table 4: Output of the meta-model used to predict the likelihood
that citizen scientists had of correctly classifying a sequence (mar-
ginal R2¼ 0.14 and conditional R2¼ 0.42)

Model term Estimate of b SE P-value

Intercept 0.33 0.35 0.35
Age (years) 0.00 0.02 0.97
Ecological knowledge (good) 0.07 0.08 0.38
Ecological knowledge (excellent) 0.12 0.11 0.30
Confidence level (reasonable) 1.35 0.11 <0.001***
Confidence level (very confident) 2.09 0.12 <0.001***
Previous accuracy (%) 0.50 0.05 <0.001***
Number of classifications 0.00 0.02 0.88

The most parsimonious models were estimated by averaging the models with

the lowest AIC (D4 AIC). The fixed effects of the model were: age, confidence

level (unsure, reasonable or very confident), ecological knowledge (poor & basic,

good or excellent) and previous accuracy of the citizen scientists. The category

reported by the citizen scientist (e.g. cat, rat or mouse) was treated as a random

effect.

***P <0.001.
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Discussion and conclusion
Engagement of citizen scientists

Citizen science is an important tool to increase nature aware-
ness in urban environments (Wei, Lee, and Wen 2016). Online
citizen science projects provide an easy-to-access opportunity
to engage large segments of the general public in scientific re-
search (Kosmala et al. 2016). Involving large numbers of people
in citizen science projects thus requires understanding their
motivations for participation as well as level of engagement
(Singh et al. 2014). In our study, citizen scientists differed widely
in their level of engagement; most volunteers classified less
than 10 sequences while a few individuals (n¼ 3) classified over
1000 sequences. These results are consistent with previous
studies showing that a small number of citizen scientists often
provide the majority of contributions (Laut et al. 2017).
Understanding demographic attributes of the most engaged cit-
izen scientists may help improve and homogenise project par-
ticipation (Lewandowski and Specht 2015; Laut et al. 2017).

In our study, professionals aged 35–55 years old were most
engaged with the project website. Age of these highly engaged
citizen scientists was lower than the average age of participants
commonly involved in conservation and restoration activities

(e.g. planting, weeding or wildlife monitoring) (Peters, Hamilton,
and Eames 2015). This may suggest that modern technologies
can be used effectively to engage with demographic groups that
are usually underrepresented in conservation activities.

Accuracy of citizen scientists

The aggregated classifications from three citizen scientists were
in 87.8% agreement with the classification of experts. This accu-
racy was greater than that reported in similar projects (e.g.
Kosmala et al. 2016, McShea et al. 2016). The relatively low num-
ber of categories in our project may explain the increased accu-
racy. Specifically, we enabled citizen scientists to classify
sequences into 15 different categories, substantially less than
the 48 and 22 categories to choose from in remote camera stud-
ies by Swanson et al. (2016) and McShea et al. (2016), respec-
tively. While this meant that some animals in our study were
not classified at the species level, the ecological benefits of
more detailed classifications were likely low compared to bene-
fits of not overwhelming citizen scientists with demands for
knowledge usually limited to experts which could risk reducing
their engagement.

The high overall accuracy found in our study may also have
been influenced by the familiarity citizen scientists had with

Table 5: Number of sequences containing common mammalian introduced predators of New Zealand and the proportion of sequences cor-
rectly classified by one, two and three citizen scientists based on weighted and unweighted classifications

Animal Sequences One citizen
scientist (%)

Two citizen
scientists (%)

Two citizen scientists
with model weighting (%)

Three citizen
scientists (%)

Three citizen scientists
with model weighting (%)

Possum 49 93.9 91.8 91.8 93.9 93.9
Cat 322 92.2 94.1 96.6 96.8 97.8
Mustelid 12 75.0 66.6 75.0 75.0 75.0
Hedgehog 153 83.7 85.0 88.9 88.9 91.5
Rat 32 75.0 81.3 81.3 84.4 87.5
Mouse 35 54.3 57.1 68.6 54.3 77.1

Classifications were weighted based on the animal citizen scientists reported, their level of confidence and their previous accuracy. Proportions in bold indicate an in-

crease in the accuracy of citizen scientists after weighting their classifications.

Figure 5: Accuracy of citizen scientists classifying remote camera data based on (a) the level of confidence they reported for each classifications and (b) their previous

accuracy. Accuracy (PPV) was based on the proportion of events in which the citizen scientist classification matched the classification of experts. Mean accuracy and

standard errors are represented for different levels of confidence citizen scientists had with their classification. The loess method was used to estimate the PPV of citi-

zen scientists in relation to their previous accuracy.
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the animals recorded. The fauna found in urban environments
in New Zealand is relatively species-poor, particularly in mam-
mals (Morgan, Waas, and Innes 2009; Anton, Hartley, and
Wittmer 2018). However, a limited number of ‘urban-adaptable’
species have become widespread and locally abundant in cities
all over the world, a common phenomenon known as biotic ho-
mogenisation (McKinney 2006). Our results thus highlight that
involving citizen scientists in remote camera studies may be
particularly suitable for urban environments because the gen-
eral public is often familiar with most of the animals found in
urban areas.

Efficiency of citizen scientists

Studies based on remote camera data should try to engage as
many citizen scientists as possible because increased participa-
tion is linked to improved accuracy classifying images
(Swanson et al. 2016). To make best use of volunteer efforts,
project managers need to define the minimum number of citi-
zen scientists required to achieve desired accuracy levels.
Consistent with McShea et al. (2016) and Swanson et al. (2016),
our results highlight that the number of citizen scientists re-
quired per sequence is category specific. We also showed how
self-assessed confidence and previous accuracy can be used to
reduce the number of classifications required without
compromising data quality (Table 5). Weighting classifications
of citizen scientists based on their ability to correctly identify
animals may be particularly beneficial to increase volunteer ef-
ficiency for studies of complex ecological systems or species
that are often misclassified by the general public (He et al. 2016).
However, experts may be required to classify categories that, in-
dependent of the number of citizen scientist classifications re-
ceived, do not reach desired levels of accuracy.

Remote cameras are a relatively novel technology for moni-
toring wildlife in urban environments. Remote cameras have
great potential to further our understanding of topical research
including invasive species, human–wildlife conflicts (Kahle,
Flannery, and Dumbacher 2016; Murray et al. 2016), animal be-
haviour (Widdows, Ramesh, and Downs 2015) and trophic dy-
namics (Inger et al. 2016) in cities. Improvements in the
capabilities of the cameras (Hobbs and Brehme 2017) and grad-
ual decrease in equipment costs (Nazir et al. 2017) will continue
to facilitate the use of remote cameras to better understand re-
lationships between fauna, people and the urban landscape. We
highlighted how citizen scientists can efficiently classify vast
amounts of data, the main constrain of remote camera technol-
ogy. However, vandalism, privacy issues, study design and cam-
era specifications and deployment should be taken into
consideration before using remote cameras in urban environ-
ments (Anton, Hartley, and Wittmer 2018; O’Connor et al. 2017).

In conclusion, involving citizen scientists with the use of re-
mote cameras may facilitate a wider use of this technology in-
cluding in urban areas while simultaneously improving
knowledge of participants about wildlife (e.g. Forrester et al.
2017). To maximise the efficiency of volunteer’ efforts while en-
suring high-quality data, project managers need to account for
the accuracy of citizen scientists and provide them with appro-
priate tools that facilitate data classification. Used in this way,
citizen scientists can provide invaluable help classifying the
large amount of data collected by camera studies.

Supplementary data

Supplementary data are available at JUECOL online.
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