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Global positioning system (GPS) technology has revolutionized the study of carnivores. Researchers commonly 
estimate kill rates with GPS data using the following steps. Firstly, researchers mark individual animals and fit 
them with GPS collars. Next, they visit a subset of “GPS clusters” (aggregated location data) during field surveys 
and assign spatiotemporal covariates associated with predation and non-predation events. Lastly, they develop 
predictive models with data collected in the field to estimate the probability that each cluster they did not visit in 
the field was a predation event. Such predation models help reduce field efforts and save money; however, these 
models are prone to error when carnivores eat prey of different sizes or exhibit shorter-than-expected handling 
times. We simulated reduced field efforts to investigate the reliability of predictive modeling in determining 
diet composition and detecting predation events for 3 puma (Puma concolor) populations with different prey 
assemblages and potential effects on handling time of carcasses. We visited a total 1,896 clusters in Chilean 
Patagonia, Colorado, and California, of which 1,752 clusters (~92%) were included to build and test predation 
models. Across all study areas, the total time a puma spent at a cluster was the only reliable predictor of a cluster 
being a predation event. When we reduced field efforts by selectively removing GPS clusters < 12 and < 24 h 
in length, model performance improved but produced inaccurate results. Predation models underestimated the 
number of predation events in California and Colorado and significantly over- or underestimated the number 
of predation events in Patagonia. Selectively reducing field efforts also reduced the diversity and evenness of 
prey we recorded in puma diets. Randomly reducing field efforts, in contrast, reduced the precision of model 
estimates. Our results highlight the importance of conducting intensive fieldwork over predation modeling to 
measure prey selection and kill rates of carnivores.

La tecnología de Sistemas de Posicionamiento Global (GPS) han revolucionado el estudio de los carnívoros. Los 
investigadores comúnmente estiman las tasas de obtención de presas con datos de GPS. Primero, los investigadores 
marcan animales individuales y luego examinan un subconjunto de “conglomerados” (datos agregados de 
ubicación) a nivel de campo; luego, asignan covariables espaciotemporales asociadas con eventos de depredación 
y sitios sin obtención de presas; por último, desarrollan modelos predictivos que estiman la probabilidad de que 
cada agregado que no visitaron en campo corresponda a un evento de depredación. Los modelos de depredación 
reducen los esfuerzos de campo y ahorran dinero; sin embargo, dichos modelos son propensos a error cuando 
los carnívoros consumen presas de diferentes tamaños o exhiben tiempos de procesamiento más cortos de lo 
esperado. Simulamos esfuerzos de campo reducidos para investigar la confiabilidad del modelaje predictivo 
para la determinación de la composición de la dieta y los eventos de depredación de tres poblaciones de puma 
(Puma concolor) en la Patagonia chilena, Colorado y California, con diferentes conjuntos de presas y efectos 
sobre el tiempo de procesamiento de las carcasas. Revisamos 1,896 conglomerados en el campo, de los cuales 
se incluyeron 1,752 (~92%) para construir y comprobar modelos predictivos de depredación. El tiempo total que 
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un puma pasó en un conglomerado fue el único predictor confiable de que éste fuera un evento de depredación 
en el área de estudio. Cuando redujimos los esfuerzos de campo removiendo selectivamente conglomerados de 
GPS con <12 horas y 24 horas de duración, el rendimiento del modelo mejoró (determinado con curvas ROC y 
validación cruzada de k-iteraciones) pero produjo resultados inexactos. Estos modelos subestimaron el número 
de eventos de depredación en California y Colorado, y sobre- y subestimaron significativamente la cantidad de 
eventos de depredación en la Patagonia. La reducción selectiva de los esfuerzos de campo también redujo la 
diversidad de presas que registramos en las dietas de puma. En contraposición, con la reducción aleatoria de 
los esfuerzos de campo, se redujo la precisión de las estimaciones del modelo. Nuestros resultados resaltan la 
importancia del trabajo de campo intensivo respecto al modelado de conglomerados para medir la selección de 
presas y las tasas de depredación de carnívoros medianos y grandes.
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Understanding the impact of predators on prey populations re-
mains a central theme of ecological research, even after more 
than a century of attention (e.g., Holling 1959; Hopcraft et al. 
2010). Assessing the impact of predators on prey often relies 
on estimates of kill rates, the number of prey killed per pred-
ator per unit time (Holling 1959), and prey selection, which can 
subsequently be used to model predator–prey dynamics and 
provide insight into the conservation and management of both 
predators and their prey (White and Lubow 2002). Kill rates 
are also useful when investigating species interactions in com-
plex multispecies communities, including apparent (Holt and 
Lawton 1994; Wittmer et al. 2013), interference, and exploita-
tion competition (Krofel et al. 2012), as well as the influence 
of human development on the behaviors of large carnivores 
(Smith et al. 2015).

Historically, researchers estimated kill rates and prey selec-
tion using direct observation of predators, snow tracking of 
focal animals, intensive radiotracking of animals tagged with 
VHF transmitters, or some combination of these techniques. 
Researchers can complement such methods with bioenergetics 
modeling to predict kill rates for cryptic and wide-ranging car-
nivores (Ackerman et al. 1984; Głowaciński and Profus 1997). 
The development of global positioning system (GPS) collars, 
however, revolutionized the study of carnivores by providing 
researchers with high-resolution location data and a more ef-
ficient means of locating, identifying, and counting prey killed 
by predators.

In their pioneering work on pumas (Puma concolor), 
Anderson and Lindzey (2003) first mapped “GPS clusters” (≥ 
2 GPS points within 200 m of each other recorded between 
1600 and 0800 h during the same night) to identify potential 
predation sites. They visited a subset of these GPS clusters in 
the field and classified each site as a predation or non-predation 
event. Next, they used spatiotemporal descriptive covariates for 
each cluster and built predictive models to estimate the prob-
ability of an unknown cluster being a predation event. Lastly, 
they fit predation models to large data sets gathered over longer 
sampling intervals to estimate the probability of every cluster 
being a predation event, while simultaneously reducing field 
efforts and increasing cost savings (Merrill et al. 2010; Blecha 
and Alldredge 2015).

The current steps for detecting predation events based on 
GPS clusters are essentially unchanged since Anderson and 

Lindzey’s (2003) original work. Researchers generally 1) de-
ploy GPS collars on animals; 2) identify GPS clusters based 
upon temporal and spatial characteristics, either visually (e.g., 
in ArcGIS—Rauset et al. 2012) or based upon an algorithm 
developed by Knopff et al. (2009); 3) visit a subset of clus-
ters (we note that this field effort varies and is often poorly 
described—Merrill et al. 2010) to determine if the cluster is 
a predation event; 4) develop biologically relevant spatial and 
temporal covariates that describe each cluster; 5) apply a top-
ranked model to all clusters for all marked animals, and apply 
a probability cutoff to classify clusters as either a predation or 
non-predation event; 6) divide the number of predation events 
by the sampling interval for each individual to estimate preda-
tion events made per unit time, also called kill rates.

Predicting predation events using GPS data to ultimately 
estimate kill rates and prey selection has been applied to a 
broad range of species, including African lions (Panthera 
leo—Tambling et al. 2010), bobcats (Lynx rufus—Svoboda 
et al. 2013), brown bears (Ursus arctos—Rauset et al. 2012), 
jaguars (Panthera onca—Cavalcanti and Gese 2010), leopards 
(Panthera pardus—Pitman et al. 2012), Eurasian lynx (Lynx 
lynx—Mattisson et al. 2011), wolves (Canis lupus—Webb 
et al. 2008), tigers (Panthera tigris—Miller et al. 2010), and 
pumas (Knopff et al. 2009; Ruth et al. 2010; Smith et al. 2015). 
Until now, no test has evaluated the accuracy and precision of 
predicting predation events and prey selection from GPS clus-
ters, which is of concern because this type of analysis has sev-
eral major weaknesses.

The primary weakness of predation models is their inability 
to reliably differentiate between predation and resting events 
for clusters of short duration (Webb et al. 2008; Knopff et al. 
2009; Blecha and Aldredge 2015). Should a model determine 
that short predation events are resting sites instead, model out-
puts underestimate kill rates, or in contrast, if models predict 
that some resting sites are predation events, outputs overes-
timate kill rates. To aid in model performance, researchers 
generally censor small prey from their analyses, and instead 
estimate kill rates only for medium and large prey (Knopff 
et al. 2009). The decision to exclude small prey is based on 
2 assumptions: longer clusters are more likely predation than 
non-predation events; and longer clusters are indicative of 
larger prey (i.e., handling time and prey size are highly cor-
related). In reality, however, carnivore handling time (and the 
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length of clusters) is influenced by prey size and other ecolog-
ical pressures, such as competitors (e.g., Krofel et al. 2012). 
Researchers suggest model estimates are more accurate in sys-
tems in which carnivores kill 1 prey type of consistent size 
than in systems with multiple prey sizes, due to the influence 
of consistent versus irregular handling times on model per-
formance (Knopff et al. 2009; Ruth et al. 2010). Many carni-
vores also suffer kleptoparasitism from dominant competitors 
(Scantlebury et al. 2014), sometimes reducing handling times 
of large kills to time parameters that overlap with resting sites 
(Ruth et al. 2010). For example, African lions and spotted 
hyenas (Crocuta crocuta) commandeer prey from wild dogs 
(Lycaon pictus) and cheetahs (Acinonyx jubatus) (Creel and 
Creel 1996; Scantlebury et al. 2014), and Eurasian lynx and 
pumas suffer kleptoparasitism by bears (Ursus spp.) (Krofel 
et al. 2012; Elbroch et al. 2015). Indirect effects driven by 
perceived risks (e.g., Elbroch and Wittmer 2013; Smith et al. 
2015) also reduce carnivore handling time at large carcasses, 
which may also effect a model’s ability to reliably identify pre-
dation events.

A 2nd weakness of predation models is in determining prey 
species for predation events identified by models, but not 
validated in the field. In fact, while there have been attempts 
to classify prey into categories based on size (Knopff et al. 
2009; Miller et al. 2010; Ruth et al. 2010), the ability of 
predation models to accurately predict predation events by 
species remains generally poor (see Williams et al. 2014 
for advances with accelerometer data that may improve fu-
ture application). As a result, inaccurate predictions can bias 
species-specific kill rates of rare or threatened species (e.g., 
Johnson et al. 2013).

We used 2 methods to evaluate the reliability of predictive 
modeling in determining predation events and diet composi-
tion for 3 puma populations (Chilean Patagonia, Colorado, 
and California) with different prey assemblages and differ-
ent effects on handling time at carcasses. First, we applied 
“selective” subsampling of our full data set to build multiple 
models to explore the accuracy of model predictions, as com-
pared with predation events determined via field surveys of 
GPS clusters. Second, we employed “random” subsampling 
of our full data set to build multiple models to explore the 
precision of model outputs. We predicted that the removal 
of short clusters (< 12 and < 24 h) via selective subsampling 
would improve model performance because models would 
then more reliably differentiate between resting sites and pre-
dation events; however, we also predicted that models would 
underestimate the number of predation events (Ruth et al. 
2010). As consistent handling time should increase model 
performance (Knopff et al. 2009), we hypothesized that the 
accuracy of predation estimates are inversely related to the 
complexity of prey assemblages. In particular, our hypothesis 
predicts that estimates would be most accurate for California, 
a single-ungulate prey system, followed by Colorado, a 2-un-
gulate system, and lastly, Patagonia, a 3-ungulate system. 
Finally, we also predicted that simulating reduced field efforts 
would underestimate the diversity of prey killed by pumas.

Materials and Methods

Study areas.—We conducted research in 3 study areas: 
Chilean Patagonia in 2008–2010, western Colorado in 2011–
2013, and northern California in 2009–2013.

The Patagonia study area is located in the southern portion 
of Chile’s Aysén District (W 47.800, S 72.000). The landscape 
is dominated by rugged mountains, and during the time of 
the study, the study area contained a mixture of 3 vegetation 
classes: 53% open Patagonia steppe in which pumas were vul-
nerable to harassment by condors (Elbroch and Wittmer 2013) 
and ranchers (Kissling et al. 2009) throughout the year; high-
elevation deciduous forests dominated by lenga (Nothofagus 
pumilio); and lower-elevation shrub communities. Pumas in 
our Patagonia study area were part of a diverse predator–prey 
system that included 2 native ungulate species, guanacos (Lama 
guanicoe) and huemul deer (Hippocamelus bisulcus) as well 
as introduced domestic sheep (Ovis aries) and European hares 
(Lepus europaeus). Persecution of pumas in the study area was 
intense until 2004 when a cessation on predator control was 
initiated over most of the study area (Wittmer et al. 2013).

The Colorado study area is located near the town of De 
Beque (W 39.385, S −108.324). The landscape is primarily 
valley bottoms supporting rangeland, highbush sagebrush 
(Artemisia spp.), and agriculture. During the time of the study, 
steep slopes were characterized by pinyon-juniper (Pinus edu-
lis and Juniperus spp.) woodlands, Gambel oak (Quercus gam-
beli) forests, and rangeland shrub communities (Atriplex spp.). 
High-elevation plateaus included mixed conifer (Pseudotsuga 
mensiesii and Pinus contorta) and aspen (Populus tremuloides) 
forests, as well as rangeland shrubs. The study area supported 
2 native ungulate species, elk (Cervus canadensis) and mule 
deer (Odocoileus hemionus), and large numbers of cattle (Bos 
primigenius). Pumas in Colorado suffered seasonal klepto-
parasitism by American black bears (Ursus americanus) that 
typically displaced them from their kills (Elbroch et al. 2015). 
Hunters also pursued pumas seasonally with hounds and fire-
arms during legal, managed hunting seasons.

Our California study area is located in the Mendocino 
National Forest near the town of Covelo (W 39.738, S 
−123.160). During the time of the study, vegetation communi-
ties varied from grasslands and mixed chaparral at low eleva-
tions, mixed coniferous forests dominated by pine (Pinus spp.) 
and Douglas fir (Pseudotsuga menziesii) at mid-elevations, and 
true fir (Abies spp.) forests at high elevations. Black-tailed deer 
(Odocoileus hemionus columbianus) were the only abundant 
ungulate prey in the area. Similar to Colorado, pumas suffered 
seasonal kleptoparasitism by black bears (Allen et al. 2015), 
but were not subject to legal hunting.

Puma captures and collar programming.—We predomi-
nantly relied on hounds to capture pumas in winter. Hounds 
forced pumas to retreat to a tree or rocky outcrop where we 
could safely immobilize them. We also used box traps in 
Colorado and California, and foot snares in Colorado to capture 
pumas during warmer months. We equipped traps with telem-
etry devices and monitored them at a minimum of twice per day 
(1 h after sunrise and again prior to midnight). In Patagonia and 
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Colorado, we anesthetized pumas with ketamine (2.5–3.0 mg/
kg) and medetomidine (0.075 mg/kg), and in California, we 
anesthetized pumas with 2.2 mg/kg of Telazol (tiletamine HCl 
and zolazepam HCl; Fort Dodge Animal Health, Fort Dodge, 
Iowa). Once a puma was immobilized, we recorded their 
standard morphological measurements, temperature, heart 
rate, and respiration at 5-min intervals. We also collected blood 
samples for genetic analyses, and fitted each animal with ei-
ther an Argos or Iridium GPS collar (Lotek 7000SAW or 
Lotek IridiumTrack M; Lotek Wireless, Newmarket, Ontario, 
Canada). Once the animal was processed, we reversed the 
effects of medetomidine with atipamezole (0.375 mg/kg) and 
released pumas at capture sites. All capture and handling proce-
dures adhered to guidelines developed by the American Society 
of Mammalogists (Sikes et al. 2016) and were approved by the 
Institutional Animal Care and Use Committee at the University 
of California, Davis (Protocols 13252, 15341, 16645, 16886).

We programmed GPS collars differently across study areas. 
In Patagonia and California, we programmed collars to acquire 
location data every 2 h and to upload location data to Argos 
satellites every 3 days. In Colorado, we programmed collars to 
acquire location data at 30-min, 1-h, or 2-h intervals, depend-
ing on collar type. Argos collars uploaded location data every 
3 days, and Iridium collars uploaded data once or twice daily.

Cluster identification and field investigations.—We iden-
tified GPS clusters by plotting GPS locations in ArcGIS or 
Google Earth (Google Inc. 2013). We defined GPS clusters as 
any 2 or more locations (representing a time period of ≥ 2 h) 
that occurred within 1 week of each other and within 150 m of 
each other. Further, clusters needed to contain a minimum of 
1 GPS location recorded during crepuscular or nocturnal peri-
ods, which varied depending on season and study area (Elbroch 
et al. 2014). We transferred location data to handheld GPS 
units and systematically searched for prey remains within a 
30-m radius circle centered on each GPS location in the cluster. 
CyberTracker certified all personnel conducting field investi-
gations to ensure reliable and standardized prey identification 
(Evans et al. 2009). Personnel identified prey remains by their 
tissues (hair, skin, rumen, and bone fragments), assessed the 
state of prey remains (e.g., the lay of the carcass, which parts 
were fed upon), and determined the presence and location of 
bite marks to determine if the puma had killed or scavenged 
the prey. We classified all clusters as predation (1) and non-
predation (0) events (e.g., beds, scavenging events).

We attempted to visit every cluster for every puma in the 
field to verify the correct classification of a predation event 
by prey species. We recognize that our approach was almost 
certainly imperfect, even with the best of intentions, and that 
well-trained observers can miss prey remains during site inves-
tigations. Nevertheless, our intensive field surveys served as our 
validation method in that we compared our findings to those 
obtained via predictive modeling and simulations of reduced 
field effort.

Simulating reduced field effort.—Following established pro-
tocols in the literature, we excluded clusters from our full data 
set where pumas scavenged animals or killed prey weighing  

< 5 kg (Knopff et al. 2009). The 5-kg cutoff used by Knopff 
et al. (2009) helped models distinguish between resting sites 
and kill sites, while also allowing the inclusion of medium-
sized prey (> 5 kg) species in model development, including 
American beaver (Castor canadensis) and North American 
porcupine (Erethizon dorsatum). We excluded clusters that we 
were unable to visit within a year of their initiation, due to col-
lar malfunctions, seasonal road closures, or delayed access to 
private lands. We called this reduced data set our “full” data set.

Then, we simulated reduced field efforts by further subsam-
pling our data sets in 2 ways. First, we created 2 subsets of our 
full data set by excluding clusters < 12 and < 24 h in duration. 
Short clusters (< 24 h) are often assumed to be non-predation 
events. For example, 24 h is a common cutoff employed by 
researchers deciding whether or not to visit a cluster in the field 
(e.g., Svoboda et al. 2013) or used in modeling as an indicator 
of predation and non-predation events (e.g., Ruth et al. 2010; 
Smith et al. 2015). Second, we subsampled our data randomly, 
omitting 5%, 15%, 25%, and 50% of our clusters in each study 
area, to explore the effects of reduced field efforts on model 
precision.

Estimating puma predation with predictive modeling.—
We conducted separate analyses for each study area. Based 
on results from previous research, we included the following 
explanatory covariates: 1) the time in hours that a puma was 
associated with the cluster (Duration); 2) a binary term indi-
cating whether or not the cluster duration was > 24 h (coded 
1 or 0, respectively; Binary); 3) the average distance of each 
GPS location to the cluster centroid (Distance); 4) the percent 
of GPS points in a cluster that occurred between 1900 and 
0600 h (PercentNight); and 5) the percent of GPS points that 
were located within the cluster radius over the cluster duration 
(Fidelity). For each analysis, we restricted the covariates to in-
clude only those correlated at r < 0.7 (Webb et al. 2008; Miller 
et al. 2010).

We used generalized linear mixed models with a random 
intercept for individual pumas to account for the unbalanced 
sample among individuals, the autocorrelation of repeated 
samples within individuals, and individual differences in for-
aging behavior (Bolker et al. 2009; Lowrey et al. 2016). We 
used the R package lme4 to fit models to data with a logit 
link and a binomial error structure (Bates et al. 2013; R Core 
Team 2013). We generated sets of candidate model using all 
combinations of covariates and selected the best predictive 
model using Akaike Information Criterion (AIC—Burnham 
and Anderson 2002). When top models were within 2 AIC 
units, we selected the simplest model to avoid including unin-
formative parameters (Arnold 2010). We discretized fitted 
values into a binary response (predation versus non-preda-
tion) by selecting an optimum cutoff derived from sensitivity 
and specificity curves (Webb et al. 2008; Knopff et al. 2009). 
We evaluated the top-ranked models using receiver-opera-
tor characteristic (ROC) curves and adapted k-folds cross-
validation (Boyce et al. 2002) where each fold represented 
the clusters from individual 1 through k (i.e., leave-one-out 
cross-validation).
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We repeated the same model building and selection proce-
dures with our full data sets of clusters and each of our selective 
simulations of reduced field efforts (excluding clusters < 12 and 
< 24 h), thus allowing the model structure to vary as a function 
of reduced field effort. We then applied the top-ranked models 
from each analysis to our full data sets in order to estimate the 
total number of predation events in each study area. We gen-
erated SE estimates using bootstrap techniques by resembling 
and discretizing the fitted values and summing the number of 
kills for each of 10,000 iterations.

For our random simulations of reduced field effort, we did 
not allow the model structure to vary for each iteration; instead, 
we fit the top model from the full data sets to all subsampled 
data sets. Following a simulation framework, we then generated 
10,000 estimates of the number of predation events for each 
study area and randomly reduced data set (i.e., omitting 5%, 
15%, 25%, and 50% of the full data set). Finally, we estimated 
the mean and SD of predation events to examine how randomly 
excluding data influenced precision. We expected accuracy to 
be consistent across simulations because we maintained model 
structure across different random subsampling.

Puma diet composition.—We summarized puma diet, as 
well as estimated Shannon’s diversity index (H) and Evenness 
(Shannon 1948; Krebs 1999) scores for our complete data set 
and our subsampled data sets, to investigate the effect of less 
field effort on detecting the diversity of prey killed by pumas. H 
is a species richness measure inclusive of the number of species 
in a sample and their relative abundances, whereas Evenness is 
a measure of how diversity is proportionally distributed. Both 
measures are critical to understanding diversity (Tuomisto 
2012), and high values indicate greater prey diversity that is 
evenly distributed across prey types.

results

Field efforts and total clusters.—We captured 26 pumas in 3 
study areas but excluded 2 individuals because we only visited 
3 of their clusters (Supplementary Data SD1). We visited a total 
of 1,896 clusters, but excluded 18 scavenging events and an 
additional 20 clusters that we did not investigate within 1 year. 
We removed an additional 100 clusters where we discovered 
prey < 5 kg to create a data set of 1,752 clusters from 24 pumas 
(California = 355, Colorado = 1,036, Patagonia = 361; Table 1; 
Supplementary Data SD2). We visited 73 ± 50 clusters for each 
individual and investigated clusters within 38 ± 70 days of 
pumas leaving the site.

Comparisons between predation estimates.—Our estimates 
of the number of predation events for each study area varied 
among selective subsets. In all study areas, our estimates of 
predation determined from models using the full data set best 
approximated observed predation determined from inten-
sive field monitoring, as compared to reduced field efforts 
that excluded clusters < 12 and < 24 h in length (Fig. 1). As 
expected, these reduced models underestimated the number of 
predation events even though models performed well (Table 2). 
In California and Colorado, data sets excluding clusters < 12 

and < 24 h in length underestimated the number of predation 
events. In Patagonia, however, predation was both greatly 
underestimated for the data set excluding clusters < 12 h in 
length and greatly overestimated for the data set excluding 
clusters < 24 h in length (Fig. 1).

Duration was the best predictor of clusters being preda-
tion events in all study areas (Supplementary Data SD3). The 
Binary term was highly correlated (r > 0.7) with Duration 
in all study areas and was removed from all candidate sets. 
Predation events were characterized by a negative relationship 
with Average Distance and a positive relationship with Fidelity, 
both indicating that pumas generally remained proximal to kill 
sites. PercentNight generally had a positive relationship with 
predation events, although these results were not consistent 
across study areas (Supplementary Data SD3). Models gen-
erally performed well when evaluated with ROC curves and 
leave-one-out cross-validation (Table 2). We note that within 
California and Colorado, there was a positive correlation be-
tween area under the ROC curve and the amount of data used 
to build models. The relationship between area under the ROC 
curve and the number of clusters was less clear in Patagonia 
(Table 2).

Selectively removing clusters (< 12 and < 24 h) resulted in a 
larger proportion of predation events versus resting sites (Table 
1) because eliminating short clusters increased the cutoff used 
to predict the probability of a predation event (Table 2). As ex-
pected, removing short clusters improved model performance, 
especially those that excluded < 24-h clusters (Table 2). We 
also found evidence supporting the prediction that California 
models would be more accurate than the other study areas due 
to the simplicity of the prey system; however, this was not the 
case for the other study areas, as the Patagonia results (3-un-
gulate system) were more accurate than those of Colorado, a 
2-ungulate system.

Our results showed that random subsampling changed the 
precision rather than accuracy of parameter estimates, except 
in the 5% reduction of clusters in Colorado (Fig. 2). Precision, 
however, did not change consistently across study areas. In 
Colorado, the spread of predation estimates derived from 
reduced data sets was relatively constant, at least until 75% 
of clusters were removed from analyses. However, just a 25% 

Table 1.—Clusters identified as predation (kills) versus non-pre-
dation events (non-kills) in California (CA), Colorado (CO), and 
Chilean Patagonia (Pat) as we selectively subsampled the data (those 
that exclude clusters < 12 and < 24 h in duration).

Study area Data used Total Kills Non-kills

CA Full 355 184 171
CA Excl. < 12 h 191 164 24
CA Excl. < 24 h 136 131 5
CO Full 1,036 474 562
CO Excl. < 12 h 547 416 131
CO Excl. < 24 h 388 337 51
Pat Full 361 215 146
Pat Excl. < 12 h 187 156 31
Pat Excl. < 24 h 136 122 14
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reduction in the number of clusters tripled the spread of poten-
tial predation estimates for California and doubled the spread 
of potential predation estimates for Patagonia.

Puma diet composition.—We documented 973 prey killed 
by pumas, but excluded 100 of these records (9.7%) from our 
analyses because prey were < 5 kg (e.g., ground squirrels, 
Spermophilus spp.; ruffed grouse, Bonasa umbellus). After ex-
cluding small prey, puma diet consisted of 88% guanaco, 9% 
domestic sheep, and 3% huemul in Patagonia; 80% mule deer 
and elk and 20% medium-sized prey in Colorado; and 96% 
black-tailed deer and 4% other prey in California.

Removing clusters < 12 and < 24 h in length reduced the 
number, diversity (H), and evenness of prey, and overestimated 
large-bodied prey in puma diets (Fig. 3; Supplementary Data 
SD4). California puma diets included the most small-bodied 

prey and were therefore most impacted by reduced field efforts: 
H dropped by 45% when excluding clusters < 12 h and 57% 
when excluding clusters < 24 h long (Fig. 3). In contrast, the 
diets of Colorado pumas included the smallest proportion of 
small-bodied prey. H dropped by 9% and 16% when excluding 
< 12-h and < 24-h clusters, respectively.

discussion

GPS collars have revolutionized wildlife research; however, it is 
imperative to understand their current limitations (Hebblewhite 
and Haydon 2010). Statistical models that use GPS location 
data to predict carnivore predation provide clear benefits over 
intensive fieldwork (e.g., less effort and cost). Our analyses, 
however, showed that reducing field efforts by excluding 

Table 2.—Top models used to estimate predation events for each data set (full; and those that exclude clusters < 12 and < 24 h in duration) in 
California (CA), Colorado (CO), and Chilean Patagonia (Pat). Covariate coefficients are reported in Supplementary Data SD3. ROC = receiver-
operator characteristic.

Study area Effort Variables K Cutoff Area under ROC curve Leave-one-out classification success

CA Full Duration, Percent Night Points, (1|IndID)a 4 0.458 0.960 0.868
CA Excl. < 12 h Duration, (1|IndID) 3 0.498 0.899 0.864
CA Excl. < 24 h Duration, (1|IndID) 3 0.801 0.915 0.919
CO Full Duration, (1|IndID) 3 0.437 0.923 0.832
CO Excl. < 12 h Duration, Average Distance, (1|IndID) 4 0.554 0.844 0.793
CO Excl. < 24 h Duration, Average Distance, Fidelity, (1|IndID) 5 0.632 0.834 0.855
Pat Full data Duration, Percent Night Points, (1|IndID) 4 0.475 0.876 0.701
Pat Excl. < 12 h Duration, Percent Night Points, (1|IndID) 4 0.577 0.840 0.845
Pat Excl. < 24 h Duration, Percent Night Points, Fidelity, 

Average Distance, (1|IndID)
6 0.785 0.942 0.852

aRepresents random intercept for each individual.

Fig. 1.—Mean number (± 95% CIs) of prey killed by pumas (Puma concolor) in California, Colorado, and Patagonia, as estimated with predictive 
modeling with our full data set and 2 reduced data sets (excluding clusters < 12 and < 24 h in duration). An asterisk (*) denotes the number of prey 
determined from intensive fieldwork visiting GPS clusters.
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clusters < 12 or < 24 h in length paradoxically improved model 
performance yet unpredictably biased the identification of pre-
dation events, which were generally underestimated. Further, 
our results suggest that randomly subsampling GPS clusters for 

field verification to save project resources may yield kill rates 
with confidence intervals too wide to make meaningful infer-
ences. As expected, we also showed that excluding field surveys 
of short clusters decreased our ability to accurately measure 
prey diversity. In short, our results underscored the importance 
of fieldwork in describing carnivore kill rates and diet composi-
tion, which are vital to understanding predator–prey dynamics 
and informing wildlife management.

When researchers remove clusters < 12 or < 24 h in length 
from their data sets, input data (predation versus non-predation 
events) become skewed toward predation events (Table 1) rather 
than more equally representing resting and predation events. 
Such skew in the data forces models to estimate predation with 
limited information on the characterization of non-predation 
events, which likely biases results. Removing clusters may also 
exacerbate model confusion in systems where handling time var-
ies due to different prey types, kleptoparasitism, or indirect per-
ceived risks (Ruth et al. 2010), as models must then differentiate 
a small sample of resting sites from kill sites with overlapping 
time parameters. For example, in Patagonia, kills of sheep were 
consistently misclassified as non-predation events and suffered 
a Type II error rate (false negative) of 72%. Patagonia sheep 
are a domestic species smaller than local ungulates and strongly 
associated with human activity; pumas appear to be aware of the 
inherent dangers of remaining near sheep they kill. Pumas han-
dled sheep for shorter intervals (clusters averaged 9.11 ± 10.12 
[SD] h) when compared to native guanacos (41.38 ± 44.16 h); 
therefore, models unexpectedly misclassified many sheep kills 
as non-predation events. The handling time associated with 
guanaco kills in Patagonia was also highly variable. Guanacos 
killed in open grasslands were quickly abandoned and usurped 

Fig. 2.—Box plots of predation estimates from top models, reflecting the precision of model outputs, as produced through 10,000 simulations. 
Simulations were repeated with different proportions of the original data for each study area to understand the effect of randomly reduced field 
efforts on detecting predation events. An asterisk (*) indicates the number of kills determined through intensive field monitoring.

Fig. 3.—Changes in species richness (H) and evenness (E) in the diets 
of pumas (Puma concolor) in California, Colorado, and Patagonia for 
the full data set and 2 reduced data sets (those that exclude clusters < 
12 and < 24 h in duration).
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by Andean condors (Vultur gryphus), which resulted in short 
clusters for large prey as well (Elbroch and Wittmer 2013).

There is further evidence in the published literature for unex-
pected model outputs following the removal of short clusters. 
For example, Smith et al. (2015) visited a subset of GPS clus-
ters, excluded small prey associated with shorter clusters, and 
built predictive models to estimate puma kill rates on deer 
across a gradient of human housing density. Based on results 
from their top model with a 24-h cutoff for cluster length, they 
concluded that female pumas that occupied habitats closest to 
human development exhibited 36% higher kill rates than their 
rural counterparts, and speculated that this increase was due to 
an indirect effect driven by fear of people that reduced hand-
ling times at deer carcasses (Smith et al. 2015). In a follow-up 
paper, Smith et al. (2016) reported on puma diet in the same 
study area, but instead of estimating kill rates, they described 
puma diets as determined from the clusters they visited during 
field surveys. In contrast to their earlier paper, they reported 
that pumas killed fewer deer in areas with greater housing den-
sities, even though deer were still abundant in these areas of 
high human use (Smith et al. 2016).

It seems predation models perform poorly in systems where 
dominant competitors and potential predators (e.g., Krofel et al. 
2012; Scantlebury et al. 2014; Elbroch et al. 2015), including 
humans (Smith et al. 2015), frequently reduce carnivore hand-
ling time by pushing them from their kills (Ruth et al. 2010; 
Smith et al. 2016). In Colorado and California, where pumas 
exhibited reduced handling time at some clusters due to sea-
sonal kleptoparasitism by American black bears, models under-
estimated the number of predation events; kleptoparasitism at 
these sites was frequent; however, pumas on average still fed 
for 2 days before a bear pushed a puma from its kill (Elbroch 
et al. 2015). In contrast, in Patagonia, where pumas sometimes 
exhibited severely reduced handling times due to persistent, 
year-round indirect effects of perceived risk of humans and 
condors (Elbroch and Wittmer 2013), models overestimated 
the number of predation events when we removed clusters < 
24 h in length.

A potential solution to the conundrum of differentiating rest-
ing sites from small or large kills with short handling times is 
to integrate accelerometer or activity data collected by modern 
GPS collars. Both metrics measure collar movement and can be 
used to discern feeding carnivores (moving their heads) from 
resting animals (limited head movement) (Fröhlich et al. 2012; 
Blecha and Aldredge 2015). The incorporation of activity data 
to improve predation estimates calculated through predation 
modeling appears promising, and perhaps necessary, as the in-
clusion of coarse activity data increased estimated kill rates by 
10% (Blecha and Alldredge 2015).

As expected, our subsampling based on cluster duration 
also reduced both estimates of species richness and evenness 
for prey killed by pumas. Research based upon GPS data has 
shown that large carnivores utilize surprising numbers of small 
prey and this variation can be captured by visiting short clus-
ters in the field to more accurately represent the trophic posi-
tion and interactions of top predators (Latham et al. 2013; Allen 

et al. 2015). This is important given known variability in prefer-
ences for different prey sizes among individual carnivores, as 
well as different age and sex classes (e.g., Wittmer et al. 2014; 
Lowrey et al. 2016; Elbroch et al. 2017). When researchers bias 
their field investigations to visitation of longer clusters, they 
may also miss depredation of neonate ungulates, a potentially 
important diet source during certain seasons.

Logistic and financial constraints are a reality for research-
ers, yet our research findings emphasize the importance of 
conducting field surveys whenever possible. Our research 
highlighted how greater time afield can yield stronger infer-
ences: more accurate proportional dietary estimates and kill 
rates for modeling predator–prey dynamics; and more com-
plete understanding of the indirect effects and other eco-
logical processes at play. Moreover, capturing and handling 
carnivores is inherently risky (Sikes et al. 2016), and as such, 
researchers should strive to gather as much data as possible 
from every marked animal to minimize handling additional 
animals unnecessarily.

Until predation models improve their ability to accurately 
predict predation events, we make the following 4 recommen-
dations to researchers studying carnivore kill rates and prey 
selection: 1) Sample intensively for discrete time periods to 
determine seasonal kill rates, rather than subsample clusters and 
rely upon predictive modeling to estimate predation parameters 
across years. We recommend researchers sample for a mini-
mum of 60 days and base the length of a cluster on species-spe-
cific handling times (e.g., social species feed in shorter intervals 
than solitary species); longer sampling periods are encouraged, 
as they will likely lead to more accurate estimates, especially in 
systems with different prey types (Knopff et al. 2009). Further, 
sample clusters at all times of day and night, as research has 
shown that diurnal clusters yield prey as well (e.g., Allen et al. 
2015). 2) Sample different individuals and seasons that might 
yield different kill rates. For example, pumas exhibit sex- and 
age-specific differences in prey selection (Elbroch et al. 2017) 
and seasonal ungulate migrations, ungulate birth pulses, and 
variation in prey vulnerability all influence carnivore prey 
selection and kill rates at different times of year (Knopff et al. 
2010; Metz et al. 2012). 3) When you decide to employ predic-
tive models, which are still useful in study systems in which 
visiting every cluster is implausible due to private property or 
inhospitable terrain, we encourage researchers to publish their 
raw data. Include the number of clusters investigated and not 
investigated in the field, and the number of predation and non-
predation events associated with said investigations, to allow 
readers to better assess the potential accuracy and precision of 
modeling estimates. 4) It is possible that carnivores kill prey 
but move on quickly, or alternatively, they remain in place but 
impartial GPS data are transferred via satellites, and therefore 
a cluster does not form. Consider sampling a random subset of 
single GPS locations in the field in addition to clusters, or even 
better, employ other methods such as snow tracking to sample 
random sections of trail, so that one can report a measure of 
detectability and associated error with cluster methods to iden-
tify prey remains.
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The results of our analyses suggest that we should approach 
predation modeling and their associated outputs with caution, 
especially when predation events are predicted from a subset 
of GPS clusters sampled in the field. Carnivore handling time, 
which impacts predation model performance, varies with klep-
toparasitism, indirect effects of fear, prey size, and other local 
ecology. Field surveys are necessary to account for this varia-
tion. The spatiotemporal characteristics of GPS clusters, how-
ever, can be used to identify the clusters researchers need to 
visit in the field (Knopff et al. 2009). Perhaps for now, this is 
the best application of cluster modeling.
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