
Design Patterns for Angular Hotdraw
Kirita-Rose Escott

Victoria University of Wellington
Wellington, New Zealand

kirita-rose.escott@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington

Wellington, New Zealand
kjx@ecs.vuw.ac.nz

ABSTRACT
The number of web frameworks available for use is growing. Web
developers need to learn how to use them effectively and efficiently.
Working through the design patterns presented in this paper for the
Angular Hotdraw application assists web developers in this task.
Web developers should be able to make a start with a the Angular
web framework and have a foundation to learn from.

KEYWORDS
design patterns, pattern mining, angular, web frameworks

ACM Reference Format:
Kirita-Rose Escott and James Noble. 2019. Design Patterns for Angular
Hotdraw. In 24th European Conference on Pattern Languages of Programs
(EuroPLoP ’19), July 3–7, 2019, Irsee, Germany. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3361149.3361185

INTRODUCTION
The number of web frameworks available for use is growing, there-
fore there is a need for developers to be able to learn how to use
them efficiently and effectively. A developer needs to have some
assistance to use a web framework for the first time. This paper
presents a set of design patterns, from which to learn how to im-
plement a simple version of the Hotdraw application using the
Angular web framework [2, 5, 6, 12, 13]. By working through these
patterns, developers should be able to make a start with Angular
and have a foundation to learn from.

PATTERN MINING
The patterns discussed in this paper were mined by following a
patternmining process [7, 9, 11]. The process consists of discovering
elements, clustering elements, extracting the essential message
from each cluster and analysing the essential messages to produce
design patterns. The patterns are mined during the implementation
of Angular Hotdraw [3, 4].

HOTDRAW
The traditional definition of Hotdraw is that it is a framework
for structured drawing editors[8]. It can be used to build editors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’19, July 3–7, 2019, Irsee, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6206-1/19/07. . . $15.00
https://doi.org/10.1145/3361149.3361185

for specialized two-dimensional drawings such as schematic di-
agrams, blueprints, music, or program designs. The elements of
these drawings can have constraints between them, they can react
to commands by the user, and they can be animated. The editors
can be a complete application, or they can be a small part of a
larger system [8]. In the context of this paper, Angular Hotdraw is
a simple single page web application users can use to render, move
and remove shapes on a canvas.

PATTERNS
This paper presents 10 patterns for Angular Hotdraw (see Table 1).
The first pattern, Angular Architecture, outlines the basic Angular
application architecture. Page Content, Component and Graphic
Content describe how basic content can be rendered in the applica-
tion. The patterns Pen, Shape, Point, and Event, describe how to
respond to mouse events in order to render shapes and lines. Tool
and Service are the final patterns which outline basic tool selection
and use in the application.

1 Angular Architecture
2 Component
3 Page Content
4 Graphic Content
5 Shape
6 Pen
7 Point
8 Event
9 Tool
10 Service

Table 1 : Patterns

https://doi.org/10.1145/3361149.3361185
https://doi.org/10.1145/3361149.3361185


EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Escott and Noble

1 ANGULAR ARCHITECTURE PATTERN
Context:Angular is an application framework that offers you the
ability to run your application over the web. An Angular web appli-
cation is made up of a number of different elements. These elements
need to be in some form of structure to enable the application to
be able to access and manipulate them.

Problem: How do you describe the architecture of your appli-
cation?

Solution: Create the root NgModule in the application module
typescript file to describe the system architecture. The @NgMod-
ule() decorator is a function that takes a single metadata object,
whose properties describe the module [6].

The properties discussed in this paper are declarations, imports,
providers, and the bootstrap. The declarations are the components,
directives and pipes that belong to the NgModule. The imports are
classes exported by other modules that are needed by components
declared in this NgModule. The providers are services which can
become accessible in all elements of the app. Finally, the bootstrap
in the main application view. Any element used throughout the
application must be declared within the NgModule to avoid errors
at compile time.

Example: An NgModule describes how the application elements
fit together. Every application has at least one Angular module.
There are three components that make up the general architecture
of the Hotdraw application, AppComponent, CanvasComponent,
and DrawingToolComponent. The Hotdraw application imports
the BrowserModule. The DrawingToolService is a provider. The
root NgModule sets the bootstrap property, The AppComponent is
added to the property to be inserted into the browser DOM. This
relationship can be shown in Figure 1 : NgModule Relationship
Model.

Figure 1: NgModule Relationship Model

The following code demonstrates how the root NgModule in Figure
1 is declared.

hotdraw/src/app/app.module.ts
@NgModule({

declarations: [
AppComponent,
DrawingToolComponent,
CanvasComponent

],
imports: [

BrowserModule
],
providers: [DrawingToolService],
bootstrap: [AppComponent]

})

A more complex application, would have a larger number of el-
ements surrounding the NgModule in the diagram and a larger
number of declarations within the application module typescript
file.

Related Patterns: Page Content (3) as the page is first declared in
the system architecture.

2 COMPONENT PATTERN
Context: An application needs to know what the content is and
how to modify it. In an application, components are building blocks.
In the Angular Hotdraw application, there are three main com-
ponent building blocks: AppComponent, CanvasComponent and
DrawingToolComponent. Figure 2: Tool Component - Selector, is
the page content defined in the DrawingToolComponent.

Figure 2: Tool Component - Selector

Problem: How do you create and modify the content of a Compo-
nent?

Solution: Create a typescript file, an HTML file and a CSS file.
These three files are are used to create and modify the content of a
component in an Angular web application.

The typescript file is where the component is declared as a com-
ponent and where its metadata is stored. The HTML file is the
file where the content for this specific component is declared. The
CSS file is where the variables used for styling this component are
declared. Figure 3: Component Structure demonstrates this rela-
tionship.



Design Patterns for Angular Hotdraw EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

Figure 3: Component Structure

These files are tied together by declaring the @Component decora-
tor in the typescript file. The selector, templateUrl, and styleUrls
properties are used to reference the HTML and CSS files, as well
as define a custom tag for this component. It should be noted that
components can have multiple CSS files in cases where styling is
shared to reduce code duplication.

Content can be declared in the same manner as in Page Content (3).
To modify the content, declare interactive HTML elements such as
buttons using the button tag, <button></button>. You can use the
built in Angular directive (click) to determine what behaviour is
performed when the user clicks on the button. Behaviour, or logic,
is declared in methods in the typescript file.

Example: The following code demonstrates the declarations of
the selector, HTML and CSS file for the
DrawingToolComponent in the @Component decorator.

The selector is drawing-tool, this is the custom tag that can be
called from other component’s HTML files to display the compo-
nent. The drawing-tool.component.html file is the HTML file
where the contents of the component are declared. The component
has only one CSS file in this case, the drawing-tool.component.css
file, which is where the styling for this component is declared.

hotdraw/src/app/drawingtool.component.ts
@Component({

selector: 'drawing-tool',
templateUrl: './drawingtool.component.html',
styleUrls: ['./drawingtool.component.css']

})

The following code demonstrates the declaration of the compo-
nent’s content in the drawingtool.component.html file. The
<h2></h2> has been extended to include a class, which refers to a
class declared in the CSS file. The button-header class determines
the style of the header when it is rendered in the web browser.
The built in Angular directive [ngClass] adds and removes CSS
classes on an HTML element. This is demonstrated on the button
elements which are styles are determined by a ternary operator. The
selectCurrentTool() method is called with a parameter, which
is the name of the tool being selected (ie. ’selector’ for the selector
tool or ’line’ for the line tool.

hotdraw/src/app/drawingtool.component.html

<h2 class="button-header">
Tools

</h2>
<button [ngClass]="selectedTool.getName()===
'selector'? 'selectedButton' :
'selectableButton'"(click)=

"selectCurrentTool('selector')">
Selector

</button>
...
<button [ngClass]="selectedTool.getName()===
'line' ? 'selectedButton' :
'selectableButton'"(click)=

"selectCurrentTool('line')">
Line

</button>
...

The following code demonstrates CSS styling of the component in
the drawingtool.component.css file. The
button-header class describes the colour and font of the header.
The selectableButton and selectedButton classes describe the
presentation variables of the buttons such as
background-color, padding, and font-size. The classes de-
fined below are applied to the <h2></h2> and
<button></button> elements, described in the HTML file above,
respectively.

hotdraw/src/app/drawingtool.component.css

.button-header{
color: #000045;
font-family: Tahoma;

}

.selectableButton {
background-color: white;
border-color: #000045;
color: #000045;
padding: 15px 32px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;

}

.selectedButton {
background-color: #000045;
border-color: #000045;
color: white;
padding: 15px 32px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;



EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Escott and Noble

margin: 4px 2px;
cursor: pointer;

}

Figure (4): Tool Component - Line, demonstrates the relationship
between the three files in action. Either the
selectableButton class or the selected Button class has been
applied to each button as a result of the ternary. Referring back to
Figure 2: Tool Component - Selector, you can see that the
selectedButton class has been applied to the ’Selector’ button,
whereas below in Figure (4): Tool Component - Line, selectedButton
class has been applied to the ’Line’ button.

Figure 4: Tool Component - Line

Related Patterns: Tool (9) as it is the basic setup to enable tool
selection in the Angular Hotdraw application.

3 PAGE CONTENT PATTERN
Context: Aweb application will present a user with an empty page
by default. The application needs a method of determining page
contents in order to know what to display to the application user.

Problem: How can you display content to users on a web page?

Solution: You can declare content in the HTML file, which will in
turn be displayed to the user when the application is run. You can
use predefined tags to label content such as ’heading’, ’image’, and
’paragraph’. You can also create custom tags which reference the
HTML files of components you wish to display in the application.
Browsers that run applications do not display the tags, but use them
to render the content of the page. In the Angular web framework,
page content is determined in the HTML file of the main application
component. This component is typically named AppComponent.

Example: In the Angular Hotdraw application NgModule declares
three components AppComponent,
DrawingToolComponent, and CanvasComponent.

As AppComponent is the main application component, reference
to other components, through the use of custom tags, as page con-
tent is determined there.

The following code, demonstrates the use of HTML to determine
the page content of the Hotdraw application. The <h1></h1> tag is
used to determine the ’heading’ of the page. The {{title}} refers
to a variable defined as
title = ’HotDraw Angular’; in the AppComponent type script
file. The HTML includes the custom tags
<drawing-canvas></drawing-canvas> and

drawing-tool></drawing-tool> which refer to
the CanvasComponent and DrawingToolComponent
respectively.

hotdraw/src/app/app.component.html
<div align="center">

<h1 class="app-header">
{{title}}

</h1>
<drawing-canvas></drawing-canvas>

</div>
<div align="center">

<drawing-tool></drawing-tool>
</div>

The Hotdraw application example of this relationship is displayed
in figure 5: Page Content. Figure 5 includes a key which demon-
strates which page content refers to which component.

Figure 5: Page Content

Related Patterns: Component (2) as it makes use of Angular Com-
ponents.

4 GRAPHIC CONTENT PATTERN
Context: An application can be interactive - where content can be
created, modified and deleted in a dynamic manner by the user of
the application. Examples of different kinds of graphical content to
render are text, images, shapes and animations.

The application needs to know how to display the graphic con-
tent back to the user. Figure 6: Graphic Content demonstrates an
example of a graphic shape, a triangle, being rendered as a part of
the page content of an application called Simple-Canvas.



Design Patterns for Angular Hotdraw EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

Figure 6: Graphic Content

Problem: How can a you implement functionality which allows
an application user to dynamically generate and show their own
graphic content?

Solution: Declare a <canvas></canvas> tag in the HTML file of
the component to use the canvas element. You can use the HTML
canvas element to display the graphics in a web browser. The
#canvas descriptor allows the element to be referenced from the
typescript file.

Graphics can be appended to and removed from the canvas element
in the typescript file. The @ViewChild Angular property decorator
configures a view to update when changes are made in the type
script file. Declare a HTMLCanvasElement variable as a constant to
construct a relationship between the canvas in the typescript file
and the <canvas> tag in the HTML file. The canvas element can
then be manipulated to display graphics determined by the user
dynamically through logic in the typescript file.

Example: The following code demonstrates the declaration and
use of the canvas element in the example displayed in Figure 6. The
style determines the black border displayed around the width and
height of the canvas element.

simple-canvas/src/app/app.component.html
<canvas #canvas style="border:1px solid #000;
width:300px; height:300px;"></canvas>

The code below demonstrates the @ViewChild being declared on
the reference to the HTML canvas element to ensure changes are
reflected as they occur. The
HTMLCanvasElement is then declared to construct the relationship
between the two canvas’.

simple-canvas/src/app/app.component.ts
@ViewChild('canvas') public canvas: ElementRef;

...
const canvasEl: HTMLCanvasElement =

this.canvas.nativeElement;
...

Related Patterns: Page Content (3) as the canvas is used to display
graphical content on a page.

5 SHAPE PATTERN
Context: The Hotdraw application needs to be able to manipulate
content on the canvas. Manipulation can include drawing, selecting,
moving and deleting of the content.

Figure 7: Select Canvas Drawing demonstrates the selection of
the square content on the canvas using the cursor.

Figure 7: Select Canvas Drawing

Figure 8: Move Canvas Drawing demonstrates the moving of the
square content from the left hand side to the right hand side on the
canvas using the cursor.

Figure 8: Move Canvas Drawing

Problem: How do you implement the functionality to enable the
application user to manipulate dynamic graphical content?

Solution: Create and store content objects to enable dynamic ma-
nipulation of individual drawings on the canvas. Create an interface
for the content objects to extend to avoid code duplication [10]. In
the Hotdraw application, the Shape interface is extended by con-
tent objects. The relationship between the content objects and the
Shape interface is demonstrated in Figure 9: Shape Interface.



EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Escott and Noble

Figure 9: Shape Interface

These content objects have startPoint and endPoint variables
and implement the isInBoundingBox(),
setNewPosition(), and draw() methods.

You use the startPoint variable to determine the starting x,y
position of the content object on the canvas. The endPoint is used
to determine the size of the content object. This is discussed at
greater length in Point (7).

isInBoundingBox() is a boolean method which returns true if
the point the application user has clicked is inside this content
object, otherwise it returns false.

setNewPosition() is a void method which updates the values
of the startPoint and endPoint variables for this particular con-
tent object.

draw() uses the CanvasRenderingContext2D object discussed in
Pen (6) to render this particular content object on the canvas to be
displayed to the user.

Once you have created the content objects, store them in some
form of data structure. The shared storage of all Shape content
objects enables accessibility to one or all drawings on the canvas
at once. You will be able to perform manipulations on the content
objects by accessing them from the data structure and invoking the
appropriate methods.

Example: The following code demonstrates the interface that all
content objects, ie shapes, extend in the Hotdraw application.

hotdraw/src/app/shape.ts
export interface Shape {

startPoint: Point;
endPoint: Point

isInBoundingBox(boundingBox: Point);
setNewPosition(newPos: Point);
draw(pen : CanvasRenderingContext2D);

}

The content objects are stored in an array of Shape objects. This
allows dynamic accessibility for manipulation. The following code
demonstrates an example of a Circle object which implements the
Shape interface. As you can see, the Circle class implements the
methods defined in the Shape interface to create a circle drawing
that is manipulable.

hotdraw/src/app/shapes/circle.ts

export class Circle implements Shape {
startPoint: Point
endPoint: Point
radius: number;

constructor(startPoint: Point,
endPoint: Point) {

this.startPoint = startPoint;
this.endPoint = endPoint;
this.radius = Math.sqrt(
(Math.pow(
(this.endPoint.x-this.startPoint.x), 2))
+ (Math.pow(
(this.endPoint.x-this.startPoint.x), 2)))/2;

}

isInBoundingBox(boundingBox: Point) {
return (boundingBox.x >=

(this.startPoint.x this.radius)
&& boundingBox.y >=

(this.startPoint.y - this.radius));
}

setNewPosition(newPoint: Point) {
this.startPoint = newPoint;

}
}

The following code demonstrates the creation and storage of a
Circle object. An array of Shape objects is declared in the type
script file. A Circle object is declared with two points as parame-
ters and assigned to the shape variable. The shape variable is then
added to the shapes array.

hotdraw/src/app/canvas.component.ts

shapes: Shape[];
...

var shape = new Circle(startPoint, endPoint);
...

shapes.push(shape);

The following code demonstrates the removal of all drawings on
the canvas by removing all shape objects from the array of shapes
and using the pen object to clear the canvas.



Design Patterns for Angular Hotdraw EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

hotdraw/src/app/canvas.component.ts
clearCanvas(){

this.shapes = [];
this.pen.clearRect(0, 0,

this.canvas.nativeElement.width,
this.canvas.nativeElement.height);

}

The following code demonstrates iterating over the list and invoking
each shape’s isInBoundingBox() method with a predetermined
boundingBox point parameter to determine if that shape is the one.
The code below demonstrates moving the shape to a new location
by calling the setNewPosition() method with the new point as a
parameter.

hotdraw/src/app/tools/selector.ts
for (var i = 0; i < shapes.length; i++) {

var selected = shapes[i];
if (selected.isInBoundingBox(startPoint)) {

selected.setNewPosition(endPoint);
break;

}
}

Related Patterns: Graphic Content (4) as it manipulates content
that is on the canvas. Pen (6) as the shape utilizes the pen object
declared to draw on the canvas.

6 PEN PATTERN
Context: The Hotdraw application needs to be able to use a tool
to ’draw’ the dynamic graphic content. Figure 6: Graphic Content
demonstrates the use of a tool to draw and fill a blue triangle.

Problem: How to do you implement funcitonality to imitate the
use of a pen on paper in an application?

Solution: Declare an instance of the CanvasRenderingContext2D
object. The CanvasRenderingContext2D interface is a part of the
Canvas API which provides the 2D rendering context for the draw-
ing on the surface of the <canvas> element [1]. The CanvasRender-
ingContext2D is obtained by passing ’2d’ to the HTMLCanvasEle-
ment.getContext() method. You can use this object to issue drawing
commands to the HTML canvas.

The object is able to draw a line or multiple lines by starting a
path by calling the beginPath() method. The object can move to
a point on the canvas by calling the moveTo() method with x and
y co ordinates as parameters. Similarly, the object can define a line
from this point to another by calling lineTo() method with x and
y co ordinates as parameters. The object object can withdraw from
the the canvas, in the way one would take the ten off of the paper,
by calling closePath() method.

The object is also able to determine the style of the drawing by set-
ting variables such as the outline and fill colour of the drawing. For
the outline, the object can set the width of the outline by assigning a

value to the lineWidth variable. The object can also set the colour
of the outline by assigning ac value to the strokeStyle variable.
The stroke() method then draws the path you have defined. The
object can determine the fill colour of the content by assigning a
value to the fillStyle variable, before calling the fill() method
to actually fill the drawing.

The CanvasRenderingContext2D encompasses the ability to draw
a number of different shapes on the canvas. Shapes such as square,
rectable, circle and line, drawn on the canvas can be created not only
statically, but also dynamically. The object can call the strokeRect()
method to draw a square by taking the starting x, y point as two
parameters as well as the width and height. The starting x, y point
and the ending x, y point are used to determine the width and
height. The x, y point relationship is discussed in detail in Point(7).

Example: The code below demonstrates an instance of the Can-
vasRenderingContext2D object being obtained and declared as the
pen variable. At this point the pen variable has the ability to draw
graphics on the canvas in the Simple-Canvas application. TheCan-
vasRenderingContext2D was declared in the same manner in the
Hotdraw application.

simple-canvas/src/app/app.component.ts
private pen: CanvasRenderingContext2D;
...
this.pen = canvasEl.getContext(’2d’);
...

The following code demonstrates the pen variable invoking the
beginPath(), moveTo(), lineTo(), and closePath()methods
to draw a triangle on the canvas in the Simple-Canvas example.

simple-canvas/src/app/app.component.ts
// the triangle
this.pen.beginPath();
this.pen.moveTo(150, 25);
this.pen.lineTo(75, 85);
this.pen.lineTo(225, 85);
this.pen.closePath();

The code below demonstrates setting of the outline and fill color
variables of the triangle in the Simple-Canvas example.

simple-canvas/src/app/app.component.ts
// the outline
this.pen.lineWidth = 5;
this.pen.strokeStyle = '#666666';
this.pen.stroke();

// the fill color
this.pen.fillStyle = "#ffff00";
this.pen.fill();

Figure 10: Graphic Content Pen demonstrates the graphics rendered
on the canvas by the pen variable in the Simple-Canvas application.
Note that it is slightly different to the example shown in Figure 6,
this is because we have used the pen variable to add an outline and
change the colour of the triangle.



EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Escott and Noble

Figure 10: Graphic Content Pen

The Simple-Canvas application example demonstrates the use of
the pen variable to create one simple shape on the canvas. How-
ever, the pen encompasses the ability to draw a number of different
shapes on the canvas.

The Hotdraw application uses the pen variable to render differ-
ent kinds of drawings at different points on the canvas such as
squares, circles and lines. The following code demonstrates the pen
variable invoking the setting the strokeStyle variable to the color
red, before invoking the strokeRect() and closePath()methods
to draw a square.

hotdraw/src/app/shapes/square.ts
draw(pen) {

pen.strokeStyle = 'red';
pen.strokeRect(this.startX, this.startY, this.endX -
this.startX, this.endY - this.startY);
pen.closePath();

}

The Figure 11: Hotdraw Canvas Pen demonstrates the result of the
pen variable issuing drawing commands to the canvas and imitating
the use of a pen in the Hotdraw application. The pen variable has
been used to draw squares, circles and lines, as well as freehand
drawings.

Related Patterns: Graphic Content (4) as the pen is used to draw
content on the HTML canvas.

7 POINT PATTERN
Context: The Hotdraw application needs to be able to create, select,
move and delete shapes from the HTML canvas based on an x,y
coordinate. The HTML canvas is interactive, which means this is
performed by executing a set of mouse events on the canvas, which

Figure 11: Hotdraw Canvas Pen

is discussed in more detail in Event (8).

Figure 12: Point X,Y Coordinate demonstrates a Square content
object on the canvas. The x,y coordinates displayed are reference to
the positions on the canvas where mouse events were responded to.
The Hotdraw application needs to be able to respond to these events
by identifying, recording and performing logic on the necessary
set of x,y coordinates.

Figure 12: Point X,Y Coordinate

Problem: How do you record sets of x,y coordinates as points
on a page in a web browser?

Solution: Declare a Point object which has an x variable and a
y variable. Point objects are used to determine position and size of
content objects on the canvas.

The startPoint variable of the content object is the point on the



Design Patterns for Angular Hotdraw EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

canvas where the content object begins. The endPoint variable of
the content object is the point on the canvas where the content
object ends. The difference between the two points is used to calcu-
late the size of the content object.

You use the startPoint, width and height variables in the con-
tent object’s draw() method to tell the pen where to draw on the
canvas.

Example: The following code demonstrates the Point object. The
x variable refers to the x coordinate and the y variable refers to the
y coordinate.

hotdraw/src/app/point.ts
export class Point {

x : number;
y : number;

}

The following code demonstrates the relationship between the
points and the content object by using the Square content object
of the Hotdraw application as an example. The width is calculated
by subtracting the startPoint.x from the endPoint.x and the
height is calculated by subtracting the startPoint.y from the
endPoint.y. strokeRect() method.

hotdraw/src/app/shapes/square.ts
export class Square implements Shape{

startPoint: Point
endPoint: Point
width: number;
height: number;

constructor(startPoint: Point, endPoint: Point) {
this.startPoint = startPoint;
this.endPoint = endPoint;
this.width = this.endPoint.x -

this.startPoint.x;
this.height = this.endPoint.y -

this.startPoint.y;
}

...

draw(pen){
...
pen.strokeRect(this.startPoint.x,

this.startPoint.y, this.width,
this.height);

...
}

}

Figure 13: Point demonstrates the relationship between the Point
object and the Shape content object on the canvas. You can apply
the formula demonstrated above to the startPoint and endPoint
variables to calculate the width and height variables: width: 191 -
109 = 82 height: 137 -75 = 62.

Figure 13: Point

Related Patterns: Shape(5), Pen(6) and Graphic Content(4), as
it determines the x,y coordinates of shapes that the CanvasRender-
ingContext2D pen object draws on the canvas.

8 EVENT PATTERN
Context: An application needs to know how to respond to certain
user input. A user of the Angular Hotdraw application inputs to
the application through the mouse. The different uses of the mouse
creates an event, such as mousedown, mousemove and mouseup.

Problem: How do you respond to user input in an application?

Solution: Define an event observer and subscriber relationship
to observe and subscribe to certain events. The observer constantly
listens for events. The observer must first be declared, before it
is able to be subscribed to by the subscriber. The subscriber then
determines the logic to be performed upon the firing of the event.

Example: The Hotdraw application example imports an observer
and a subscriber from the Reactive Extensions for JavaScript (RxJS)
to define this relationship. The code below demonstrates this im-
port.

hotdraw/src/app/canvas.component.ts
import { Observable, Subscription } from 'rxjs';

The mousedown and mouseup events performed on the canvas
are observed in the Hotdraw application. The code below demon-
strates the the declaration of the observer, which listens out for
the mousedown event. The mouseDownObserver specifically ob-
serves the mousedown event on the HTML canvas element defined
in Graphic Content (4). The
mouseDownObserver is alerted each time the mousedown event is
performed on the canvas.

hotdraw/src/app/canvas.component.ts
mouseDownObserver: Observable<any> =
Observable.fromEvent(canvasEl, 'mousedown');

The subscriber is subscribed to the
mouseDownObserver. The code below demonstrates the definition



EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Escott and Noble

of the mouseDownSubscriber, which includes the logic to be per-
formed each time the mousedown event is performed on the canvas.

The logic assigns the x,y coordinates from the MouseEvent to a
Point variable previously declared. The point on the canvas where
the user pressed down, is saved to the startPoint variable that
can be used outside of the subscription.

hotdraw/src/app/canvas.component.ts

mouseDownSubscriber : Subscription =
this.mouseDownObserver.
subscribe((res: MouseEvent) => {

startPoint = {
x: res.clientX - rect.left,
y: res.clientY - rect.top

};
});

TheHotdraw application is also interested in observing themouseup
event. An observer is defined to listen specifically for the mouseup
event. The following code demonstrates the declaration of the sec-
ond observer in the Hotdraw application.

hotdraw/src/app/canvas.component.ts

mouseUpObserver: Observable<any> =
Observable.fromEvent(canvasEl, 'mouseup');

The subscriber determines what logic is to be performed each and
every time the mouseup event is performed on the canvas. The
logic assigns the x,y coordinates from the MouseEvent to a Point
variable previously declared.

The coordinates are assigned to the endPoint variable instead
of the startPoint variable. The drawingTool.performAction()
method is called with the shapes array, startPoint and endPoint
as parameters to perform further logic. Each time the mouseup
event is performed on the canvas, the endPoint variable is updated
and the drawingTool.performAction() method is called. The
drawingTool.performAction() is discussed at a greater length
in Tool (9).

hotdraw/src/app/canvas.component.ts

mouseUpSubscriber : Subscription =
this.mouseUpObserver.
subscribe((res: MouseEvent) => {

endPoint = {
x: res.clientX - rect.left,
y: res.clientY - rect.top

};
this.drawingTool.performAction

(this.shapes, startPoint, endPoint);
});

Related Patterns: Graphic Content(4) and Point(7) as the
observer/subscriber listens for mouse events on the canvas to de-
termine points.

9 TOOL PATTERN
Context: The application needs to be able to distinguish which
logic to perform in response to the application user’s mouse events.

Problem: How do you determine what action to perform on the
canvas?

Solution: Declare a tool object for each of the actions, and have
one dedicated variable to represent which tool is currently selected.
Create an interface for tool objects to extend to save code dupli-
cation. In the Hotdraw application, the Tool interface is extended
by tool objects. The relationship between the tool objects and the
Tool interface is demonstrated in Figure 14: Tool Interface.

Figure 14: Tool Interface

These tool objects have a name variable and implement the getName()
and performAction() methods.

You use the name variable to determine the name of the tool.

getName() returns the name of the tool object as a string.

performAction() performs the specified logic of the tool, for ex-
ample, the ’Selector’ tool’s performAction() method selects the
shape content object at a particular point (x,y coordinate) on the
canvas.

Once you have created the tool objects, you will be able to per-
form manipulations on the shape content objects by invoking the
performAction() method.

Example:The following code from theHotdraw application demon-
strates the Tool interface. The performAction() method takes an
array of shape content objects and two point objects as parameters.
The method adds, removes or modifies a shape content object in
the array before returning it to the canvas component.

hotdraw/src/app/tool.ts
export interface Tool {

name : string;

getName();

performAction(shapes: Shape[],
startPoint: Point,



Design Patterns for Angular Hotdraw EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

endPoint: Point);
}

The following code demonstrates the Remover tool which removes
the shape content object at a particular point (x,y coordinate) on
the canvas.

The method searches the array for the shape content object at
a point on the canvas selected by the user of the application. When
a match is found, the shape content object is removed from the
array. The modified array of shapes is returned to the canvas com-
ponent.

hotdraw/src/app/tools/creator.ts
export class Remover implements Tool{

name: string;

constructor(name: string){
this.name = name;

}

getName() {
return this.name;

}

performAction(shapes: Shape[],
startPoint: Point,

endPoint: Point) {
if (shapes.length == 0) { return; }

for (var i = 0; i < shapes.length; i++) {
var selected = shapes[i];
if (selected.isInBoundingBox(startPoint)) {

shapes.splice(i, 1);
break;

}
}

return shapes;
}

}

A dedicated variable, drawingTool, which represents the currently
selected tool, is first declared and then updated in the canvas com-
ponent when a change in tool occurs. A change in tool is discussed
in Service (10). The code below demonstrates the currently selected
Tool object in the canvas component. The default drawingTool is
the Selector.

hotdraw/src/app/canvas.component.ts
//default tool is selector;
drawingTool : Tool = new Selector();

The drawingTool variable is called each time a mouseup event
occurs, discussed in Mouse Events(8), to perform the relevant logic.
The canvas component displays the name of the currently selected
tool above the canvas. Figure 15 : Currently Selected Tool Circle
demonstrates that the current tool is Circle.

Figure 15: Currently Selected Tool Circle

The following code demonstrates the drawingTool.getName()
method being invoked. The <h2> tag, discussed in Page Content(3),
determines the heading. The heading is then referenced from the
type script file in the same manner as the canvas element in Dy-
namic Graphic Content(4).

drawingTool is used to assign the value returned by the getName()
method to the innerHTML value of the heading. The behaviour on
the canvas should reflect the name of the tool displayed. For exam-
ple, Figure 15 displays ’circle’ as the currently selected tool. Thus,
we would expect a circle to be created and displayed in response to
a mousedown and mouseup event on the canvas.

hotdraw/src/app/canvas.component.html
<h2 class="curr-tool" #h2 id="showTool">
</h2>

hotdraw/src/app/canvas.component.ts
@ViewChild('h2') public header: ElementRef;

...
const selectedTool: HTMLHeadElement =

this.header.nativeElement;
...

selectedTool.innerHTML =
this.drawingTool.getName();

Related Patterns: Graphic Content(4) as the Tool object deter-
mines which actions are performed on the canvas.

10 SERVICE PATTERN
Context: In Angular, components do not share variables between
each other. A user can select, manipulate and change a variable in
a component. Often, a different component needs to know about
the change to the variable. An application needs to know how to
share this information.

Problem: How do you communicate the change in variable be-
tween components?



EuroPLoP ’19, July 3–7, 2019, Irsee, Germany Escott and Noble

Solution: Create an instance of a service using the
@Injectable() decorator. An injectable service can be injected in
multiple components as it can be provided as a singleton instance
[5]. The service is used to communicate information between com-
ponents.

Create an instance of an EventEmitter object in the service. Create
a method in the service which invokes the EventEmitter to emit
custom events, and register handlers for those events in compo-
nents.

Declare the service in all components which need to communi-
cate information between each other by passing an instance of the
service to the constructor of those components.

In the component where the variable is changed, declare an in-
stance of a listener using the @HostListener() decorator. The
listener declares a DOM event to listen for, and provides a handler
method to run when that event occurs[6]. Implement the handler
method to invoke the method declared in the service.

In the component waiting for the change in variable, use the service
to subscribe to the custom event emitted by the service. Implement
the logic to be performed once the event is received. This logic will
be performed each time the event is emitted by the EventEmitter
in the service.

Example: The user of the Angular Hotdraw application selects the
tool to be used in the DrawingToolComponent discussed in Tool(9).
The choice of currently selected tool needs to be propagated to the
CanvasComponent, where the logic is performed on the canvas.

The DrawingToolService is used to communicate the change in
the tool variable between the two components. The following code
demonstrates the declaration of the service. The service has an
instance of an EventEmitter. The EventEmitter emits the change in
the Tool object when the changeTool() method is invoked.

hotdraw/src/app/drawingtool.service.ts

@Injectable()
export class DrawingToolService {

@Output() toolChange: EventEmitter<Tool>
= new EventEmitter();

changeTool(tool: Tool)
{

this.toolChange.emit(tool);
}

}

An instance of the service is passed in to the constructor of both the
DrawingToolComponent and the CanvasComponent. The following
code demonstrates first the constructor of the DrawingToolComponent,
followed by that of the CanvasComponent.

hotdraw/src/app/drawingtool.component.ts

constructor(private
drawingToolService: DrawingToolService) {

this.selectedTool = new Selector();
}

hotdraw/src/app/canvas.component.ts

constructor(private
drawingToolService: DrawingToolService) {

this.shapes = [];
}

The changeTool() method of the service is invoked in the
DrawingToolComponent when the @HostListener() handles the
’click’ DOM event. This is demonstrated in the following code.

hotdraw/src/app/drawingtool.component.ts

@HostListener('click')
click() {

this.drawingToolService
.changeTool(this.selectedTool);

}

The CanvasComponent uses the service to subscribe to the event
emitted in the changeTool() method. The following code demon-
strates the logic that is performed each time the change of tool
variable custom event is emitted. The drawingTool, Tool object,
variable is updated to be the variable passed through the service.
The selected tool in the HTML is updated. The event observables
are reset and the captureAllEvents() method is invoked. The
captureAllEvents()method captures the events being performed
on the canvas, discussed in Event 8.

hotdraw/src/app/canvas.component.ts

this.drawingToolService.toolChange
.subscribe(currentTool => {

this.drawingTool = currentTool;
selectedTool.innerHTML =

this.drawingTool.getName();
//once we know the tool, reset observable
//and capture the mouse events
this.mouseDownSubscriber.unsubscribe();
this.mouseUpSubscriber.unsubscribe();
this.captureAllEvents(canvasEl);

});

Figures 2, 4 demonstrate the change in tool discussed in Com-
ponent (2). Figure 3 demonstrates the different components. The
heading ’Current Tool is:’ demonstrates the result of using the
DrawingToolService.

Related Patterns: Tool (9) as it enables the change of tool. Compo-
nent (2) as it facilitates the communication between components.



Design Patterns for Angular Hotdraw EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

ACKNOWLEDGEMENTS
I would like to thank my Shepherd Christian Kohls who gave con-
structive and valuable feedback. I would also like to thank my
co-author and my focus group who also gave valuable feedback.

REFERENCES
[1] 2005-2019. Canvas API. https://developer.mozilla.org/en-US/docs/Web/API/

Canvas_API.
[2] Seyed Hossein Ahmadpanah. 2015. What is Angular. js?! (2015).
[3] Kent Beck and Ralph Johnson. 1994. Patterns generate architectures. In Object-

Oriented Programming, Mario Tokoro and Remo Pareschi (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 139–149.

[4] Kent Cunningham, Ward Beck. 1994. A CRC Description of HotDraw. http:
//c2.com/doc/crc/draw.html

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
1994. Design Patterns: Elements of Reusable Object-Oriented Software
(1 ed.). Addison-Wesley Professional. http://www.amazon.com/

Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_
at_ep_dpi_1

[6] Google. 2010-2018. Tutorial: Tour of Heroes. https://angular.io/tutorial.
[7] Takashi Iba and Taichi Isaku. 2012. Holistic Pattern-Mining Patterns. In 19th

Pattern Languages of Programs conference. Citeseer.
[8] Ralph E. Johnson. 1992. Documenting Frameworks Using Patterns. SIGPLAN

Not. 27, 10 (Oct. 1992), 63–76. https://doi.org/10.1145/141937.141943
[9] Gerard Meszaros and Jim Doble. 1997. A pattern language for pattern writing. In

Proceedings of International Conference on Pattern languages of program design
(1997), Vol. 131.

[10] James Noble. 2000. Arguments and results. Comput. J. 43, 6 (2000), 439–450.
[11] Alice Sasabe, Tomoki Kaneko, Kaho Takahashi, and Takashi Iba. 2016. Pattern

mining patterns: a search for the seeds of patterns. In Proceedings of the 23rd
Conference on Pattern Languages of Programs. The Hillside Group, 12.

[12] Jenifer Tidwell. 2010. Designing interfaces: Patterns for effective interaction design.
" O’Reilly Media, Inc.".

[13] Tim Wellhausen and Andreas Fiesser. 2012. How to write a pattern?: a rough
guide for first-time pattern authors. In Proceedings of the 16th European Conference
on Pattern Languages of Programs. ACM, 5.

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
http://c2.com/doc/crc/draw.html
http://c2.com/doc/crc/draw.html
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://angular.io/tutorial
https://doi.org/10.1145/141937.141943

	Abstract
	1 Angular Architecture Pattern
	2 Component Pattern
	3 Page Content Pattern
	4 Graphic Content Pattern
	5 Shape Pattern
	6 Pen Pattern
	7 Point Pattern
	8 Event Pattern
	9 Tool Pattern
	10 Service Pattern
	References

