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Abstract—In the optimization problems with uncertain
parameters, a solution is said to be robust if it is feasible
with high probability regarding the realization of
uncertain parameters. In this paper, a new robust
approach is developed for the linear problems in which
the model parameters are dependent on each other. The
proposed approach converts the linear model to an
equivalent integer linear programming one using the
primal and dual theorem. The results of the paper
indicate the ability of the new approach in fixing some
inconsistency of the common robust optimization
approach for the mentioned problem.
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I. INTRODUCTION

The robust optimization approaches encompass
techniques and methodologies that support decision-making
against parameter uncertainty to find a robust solution [1].In
the concept of robustness, a range of solutions should be
considered, which are obtained by taking different possible
values of uncertain parameters. On one hand of this range,
there is a thoroughly conservative solution that remains
feasible for any realization of the uncertain parameters as a
"pessimistic solution." At the opposite end, there is an
"optimistic solution," i.e., the solution which could be
obtained if the uncertain parameters are realized in the state
wherein we have the best value of the objective function. In
reality, the conservative approach is appropriate for
engineering applications such as robust control theory; for
example, a doomed satellite launch or a destroyed unmanned
robot results in a significant adverse effect that cannot be
connived. However, in business practices, the argumentative
event, such as low demand, does not lead to high
consequences as an engineering practice. Business managers
usually seek a feasible solution with a high level of
confidence and also high value for a considered objective

function. Indeed, they are not interested in complete
protection against uncertain events at the expense of rigorous
deterioration in the objective function [1]. Therefore, the
solutions which lie on a spectrum between these two
extremes may be more desirable for decision-makers. Each
of the solutions in this range can be regarded as a robust
solution with a different degree of robustness.

In reality, the uncertainty in the model parameters comes
from different resources such as the uncertainty of system
outputs related to approximations in the modeling process [2,
3], production tolerances and actuator imprecision
intentionally exposed for being the model simple and cost
and time effective and changes in environmental and
operating conditions of the model in the future that could not
be predicted precisely before that [4, 5].

In mathematical optimization, the uncertainty in the
objective function and the feasible region of solutions are
sometimes distinguished. When the uncertainty only
influences the feasibility of solutions, then robust
optimization approaches aim to seek a feasible solution for
any realization of unknown coefficient within a smaller
realistic set, which is called "uncertainty set." This set
sometimes is centered on the nominal values of uncertain
parameters. The choice of uncertainty set plays an important
role in determining the level of deterioration in the objective
function and the level of protection against uncertainty and
feasibility of the resulting solutions [1, 6, 7]. When the
uncertainty exists in parameters of an objective function, the
robust optimization approach pursues a solution for any
realization of unknown parameters. In this case, a common
approach is to optimize the worst-case of the objective
function. Also, this can be done by incorporating the
objective function as a new constraint into the model
constraints. Moreover, the researchers examined both single
objective function[8, 9] and multi-objective function[10, 11]
for achieving robust solutions. In the proposed robust
approach, a worst-case analysis of objective functions has
been considered.
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II. LITERATURE REVIEW

The duality has played a key role in the development of
robust models [12, 13]. Some researchers have investigated
the relationship between primal and corresponding dual of
robust optimization problems. For example, it has been
shown that the worst of primal is equivalent to the dual best
[14]. In the proposed robust approach, this relationship is
utilized to convert a MinMax combinatorial problem to an
equivalent MILP.

It is worth to note that the robust concepts and techniques
have originally rooted in engineering practices, and as a
preliminary effort in this field, the ‘‘Taguchi method’’ is a
well-known practice that considers the robustness in the
design of products[15]. In the operation research context, the
research of [16] could be referred to as pioneering
publications.

To deal with uncertainty in the robust optimization
approaches, generally, three main categories exist in the
literature: deterministic, probabilistic, and possibilistic. In the
deterministic type, the domain of uncertain parameters is
considered. This type of uncertainty arises when there is no
more information about uncertain parameters except their
domain of variation [12, 17].In the Probabilistic robust
optimization, the likelihood of uncertain events is considered,
and the probabilistic theory is extended to the robust
optimization problem. In this field, the connections of the
robust optimization with moment information [18, 19], two-
stage optimization approach [20, 21], multi-stage
optimization approach [22, 23], and risk theory [24-26] have
been studied. Moreover, the degree of an uncertain event is
measured using fuzzy measures in the possibilistic type [27].
It is worth mentioning that in this paper, the deterministic
type of uncertainty is studied, and the dependency between
uncertain parameters is taken into account for avoiding
inconsistency in the model results.

To measure the robustness of a solution, some robustness
measures have been introduced in the literature. The robust
counterpart is a robustness measure that explores a solution
amongst feasible solutions with the best objective function
for all values of uncertain parameters [28]. This measure is
used for deterministic uncertainty type as a conservative
approach. On the other hand, expectancy measures are
another robustness measure that takes into account a
probabilistic function of uncertain model and obtains a
robust solution by optimizing this function. Conditional
expected value [29] and variance [30] are examples of these
measures. Another measure is the probabilistic threshold of
robustness, which considers the probability distribution of an
uncertain model for searching a robust solution within a
predefined threshold [29]. Statistical feasibility robustness is
another measure of robustness that explores a feasible
solution with a predetermined probability. The chance
constraint programming method is an example of this
robustness measure [31]. Finally, the possibilistic uncertainty
measure takes into account uncertainty that is identified
subjectively. For this type of uncertainty, membership
function is usually defined using a fuzzy set theory [27].

Generally, to implement the ideas of the robustness, two
approaches exist. One approach is the "simplification
strategy" introduced by [32], whereas another approach is
"simulation optimization technique" nominated by [33]. The
first approach is used for modeling problems mathematically,
and it is applicable if the probabilistic distribution or
plausible membership function of an uncertain model can be
determined or estimated. On the other hand, techniques such
as Monte-Carlo simulation are applied to simulate the real-
world problem in the second approach. The latter is helpful
for some problems that an explicit mathematical
programming model cannot model either, or their
mathematical models are complicated enough to be
implemented efficiency by the available standard procedures.
In this paper, a linear problem with shared uncertain
parameters is addressed, and a mixed-integer linear
programming (MILP) model is proposed for taking into
account the concept of robustness. Thus, the proposed model
in this study is categorized as a "simplification strategy."

III. STUDY DESIGN

In this paper, it is assumed that uncertain events are
common between the parameters of the model. Therefore, it
is not reasonable to consider these parameters individually.
Here, each event is defined as a random variable, whereas
only its domain is known. The models introduced by
[17],[34], and [12] are among the robust models which
regard the domain of uncertain parameters. [17] developed a
robust model under the uncertain condition with a fully
conservative robust approach, wherein this solution remains
feasible for all realization of uncertain parameters. The
advantage of the Soyster approach is that a linear
programming model remains linear after applying robustness
modifications. However, that conservative and worst-case
analysis approach does not yield good value for the objective
function of the problem. [34] proposed a less conservative
robust model that made a tradeoff between feasibility and
optimality of the solutions. Indeed, that method converted a
linear programming problem to a nonlinear one and made it
more challenging to solve. One of the applicable robust
optimization approaches is [12] that has been great fund
interest between researchers and practitioners. Moreover, this
approach has the ability to doing tradeoff efficiently between
feasibility and optimality of solutions. However, that
approach does not consider repetitive uncertain parameters.
Thus, we utilized the idea of robustness in [12] and
developed a new robust optimization approach for the
problem with dependent uncertain parameters.

The rest of this paper is organized as follows. First, after
a brief description of the [12] approach, the challenges of
this approach are discussed. Then, the new robust approach,
which overcomes the mentioned shortcomings of the [12] is
developed. After that, numerical examples are conducted to
show the validation of the proposed approach. A discussion
section follows these lines. Finally, the results of the paper
and future research opportunities are presented.
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IV. ASSUMPTIONS AND ANALYSIS

A. A Model with Shared Parameters
Before explaining the proposed robust optimization

approach, we first consider a simple production planning
model. Also, we show some inconsistency in the robust
solution of the model based on [12] approach. This model is
as follow:
Problem (1)

1 1 1 2 2 2 3 3 3 4 4 4. . . . . . . .Max c d x c d x c d x c d x   (1)
. .s t

1 1 1 2 2 2 3 3 3 4 4 4. . . . . . . .a d x a d x a d x a d x C    (2)
, 0 1ii x   (3)

The model aims to maximize the net profit of production
in a firm with total production capacity equal to C. Here, di
(i=1, 2, 3, 4) stands for the uncertain demand of product i.
Moreover, xi denotes the percentage of product i demand,
which is prepared by the firm as the model variable. Also, ci
and ai are the net profit per unit and the capacity usage per
unit for the product i. In the following, after explaining [12]
approach, we show how this approach results in an
incompatible robust solution for the production planning
problem. [12] approach considers a linear programming
model as follow:
Max Cx (4)

. .s t
Ax b (5)
l x u  (6)

In this model, it is assumed that iJ is the set of
coefficients in row i of matrix A that are subject to
uncertainty. Each entry |ij ia j J in row i is a symmetric
and bounded random variable that takes values in an
interval ˆ ˆ[ , ]ij ij ij ija a a a  . Associated with the uncertain
variable ija

 , the random variable ( ) /ij ij ij ija a a  
  is

regarded, which is assumed to follow an unknown but
symmetric distribution in the interval [-1, 1]. Following the
above assumptions and denoting i as the desired number of
uncertain parameters in row i which are regarded as critical
parameters, [12] introduced the equivalent robust model of
the above linear model as follow:

'Max C X (7)
. .s t

ˆ ˆmax{ ( ) }

{ { | , , \ }

i
i

i

ij j
j

ij i i i it t iS j s

i i i i i i i i i i

a x

a y a y b i

S s t s J s t J s




       

       



 (8)

j j jy x y   (9)
L X U  (10)

0Y  (11)

Also, using the primal and dual relations, [12] showed
that the above robust model is equivalent to the linear model
as below:

'Max C X (12)
. .s t

i

ij j i i ij i
j j J
a x Z P b i



      (13)

ˆ ,i ij ij j iZ P a y i j J    (14)

j j jy x y j    (15)
L X U  (16)

0 ,ijP i j  (17)
0iZ i  (18)
0jy j  (19)

The idea behind this model is to choose uncertain
parameters in the constraint i and set their values equal to
their upper or lower bounds such that the constraint imposes
the most restriction on the feasible space of solutions. In this
way, the feasibility of the obtained solution is ensured with
more probability than a thoroughly conservative approach.

Notably, the variable Pij in the constraints (13) and (14)
denotes whether parameter j in constraint i take its upper
bound or lower bound as a critical value or its mean value. In
this regard, using the dual-primal relations for developing
this model as introduced in [12], if Pij is positive in the
obtained robust solution, then this means that the parameter j
of constraint i takes a critical value.

Considering the above discussion, we come back to
Problem (1) and explain the arisen inconsistency of [12]
approach for this problem. Let the value of parameters in
Problem (1) is as Table I. Furthermore, we assume
capacity=90. Moreover, to convert Problem (1) in the form
of [12] model, we define the parameters ei=ci.di and fi=ai.di
and substitute them in Problem (1). Doing so and using the
interval multiplier operation, the values of ei and fi for
different products will be as Table II.

TABLE I. VALUE OF THE PARAMETERS IN PROBLEM (1)

i 1 2 3 4
ai 4 3 2 3
ci 8 4 3 4
di 8 7 8 9

3 2 4 4

TABLE II. VALUE OF THE MODIFIED PARAMETERS IN PROBLEM (1)

i 1 2 3 4
ei 40 28 24 36

15 8 12 16

fi 32 21 16 27

12 6 8 12

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on June 15,2020 at 09:37:06 UTC from IEEE Xplore.  Restrictions apply. 



 

     

 

 

 

 

586

Now, to model Problem (1) using [12] approach, two
other modifications are done: the objective function is shifted
to the problem constraints
as 1 1 1 2 2 2 3 3 3 4 4 4. . . . . . . .z c d x c d x c d x c d x    ; the objective
function of the problem is considered Max z . Now, if
Problem (1) is solved using [12] approach, the robust
solution of the problem 1 2  (the converted objective
function constraint) and 2 2  (the capacity constraint) is
as Table III.

TABLE III. THE ROBUST SOLUTION OF PROBLEM (1) USING BERTSIMAS
AND SIM (2004) APPROACH

i 1 2 3 4
xi 0.532 1 0.665 1

yi 0.532 1 0.665 1

p1i 0 0.025 0 2.658

p2i 0.38 0 0 1.975

Taking into account the value of 1 | i 1, 2,3, 4ip  in Table
(3), it is clear that the parameters e2 and e4 take their upper
bound value in the optimal robust solution. This is
corresponding to considering the lower bound values for d2
and d4. However, the parameters e1 and e3 take their mean
value, and that is corresponding to setting d1 and d2 equal to
their mean value. Similarly, the values of 2 | i 1, 2,3, 4ip 
Table (3) denote that the parameters f1 and f4 take their upper
bound value, which is corresponding to d1 and d4 at their
upper bounds. Subsequently, f2 and f3 appear with their mean
value, which means d2 and d3 takes their mean values in the
second constraint. These results show an inconsistency or a
conflict in the robust solution because di 's appear with
different values in the different constraints.

In the next section, a new robust optimization approach is
proposed, which fixed the mentioned inconsistency, although
it inherits the concept of robustness addressed by [12].

B. The New Robust Optimization Model
In the previous section, the robust optimization approach

of [12] was discussed, and it was shown that this approach is
not satisfactory for some problems with shared parameters.
The previous section aimed to argue that in problems with
shared uncertain parameters, the approaches which consider
these parameters individually and ignores the dependency
between them may lead to conflicts in their results. To the
best of our knowledge, this situation has not been addressed
by the previous studies in the robust optimization problems
particularly when interval numbers express uncertain events.

To explain the new approach, it should be noted that in
the linear optimization problems, the critical value of an
uncertain parameter which causes the objective function to
be worst is its upper bound or its lower bound. Therefore, we
introduce two binary variables 1 and 2 for each uncertain
parameter denoting whether the uncertain parameter takes its
upper bound or its lower bound, respectively. Moreover, to

explain the new approach, a maximization problem as
following is considered:
Max z CX


(20)

.s t
AX b


(21)

0X  (22)
In this problem, X is a 1n  vector of positive real

variables, C


is 1 n a vector, A

is a m n matrix, and b


is

a 1n  vector of parameters. It is assumed that each entry
ija
 of the matrix A


, each entry jc

 of vector C


, and each
entry ib


of vector b


take values in the

intervals [ , ]ˆ ˆij ij ij ija a a a  , [ , ]ˆ ˆj j j jc c c c  and
ˆ ˆ[ , ]i i i ib b b b  respectively.

It also is assumed that there are k uncertain events which
could be shared between uncertain parameters. For each
uncertain event k, two binary variables 1

k and 2
k are

considered indicating whether that uncertain event appears in
the robust solution with its upper bound or its lower bound.
Moreover, we call 1

k as the first robust binary variable of
the uncertain event k, which will be equal to 1 if that event
takes its upper bound in the robust solution or will be 0
otherwise. Similarly, 2

k is called the second robust binary
variable of the uncertain event k and will be equal to 1 if that
event appears with its lower bound in the robust solution or
will be 0 otherwise. Each element of the model parameters is
assumed to be related to only one uncertain event. In this
regard, the notations jce


, ijae


and ibe


are defined for

indicating the related uncertain event of the element jc
 ,

ija
 and ib


respectively. To distinguish the uncertain

parameters which take their critical value from the ones that
appear with their mean value in the robust solution, we
define the matrix A, the vector C, and the vector b, which
contain the elements ija , jc and jb respectively. Also, the

matrix Â , the vector Ĉ , and the vector b̂ are introduced,
which contain the elements îja , ˆ jc and îb respectively.

Remembering these notations, the matrix 1Â  , the vector
1Ĉ  , and the vector 1b̂  are defined whose elements are

respectively the corresponding elements of the matrix Â ,
Ĉ and b̂ which are multiplied by the first robust binary
variable of those elements. For example, the vector

1Ĉ  shows the vector whose j'th element is 1ˆ .
c je

jc 


.

Similarly, the matrix 2Â  , the vector 2Ĉ  , and the vector
2b̂  are defined whose elements are respectively the

corresponding elements of matrix Â , Ĉ and b̂ which are
multiplied by the second robust binary variable of those
elements. Also, the parameter set l is defined as a set
containing the uncertain parameters of type l (for example,
the parameters which are related to demand of products can
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be classified as the parameter set of demand). Taking into
account the above notations, the proposed robust
optimization model is presented as the following:
Model (1):

1 2

1 2

1 2

1 2

1 1

1
, {0,1}

( ).
k k

l
k j
k k

k k

l

k K
k K

Min Max z C C C X 

 

 
 



  

   
  

  


(23)

. .s t
1 2 1 1

1 1 1 1( ). ( )A A A X b b b       
(24)

0X 
(25)

In model (1) for given values of j s, the aim is to find a
solution by selecting up to j uncertain parameters in the
set j and set the value of them equal to their upper bound
or lower bound such that it leads to the worst optimal value
of the objective function. This idea will cover the concepts of
robustness in the proposed approach. Before explaining the
solution approach proposed for converting this problem to an
equivalent mixed-integer linear programming one, we claim
such an approach is similar to [12] approach when there are
no shared uncertain events in the problem. Actually, in [12]
approach, the aim is to choose  uncertain parameters in
their critical value such that the solution space becomes the
most restricted. In this way, the feasibility of the robust
solution is ensured with high probability regardless of the
realization of the uncertain events. Also, it is known from the
operational research concepts that if the feasible space of the
solutions becomes more restricted in an optimization
problem, the value of the objective function will not be better,
and it is possible to become worse. So the new approach
results in a worst-case analysis regarding the sets j 's as
the "uncertainty set". Hence, Lemma (1) is stated as below:
Lemma (1): the results of the new approach are the same as
[12] approach when there are no shared parameters in the
problem.

Now, the procedure used for solving Model (1) is
described. Model (1) is a two-level combinatorial
optimization model. In the first level, all combinations of
first and second robust binary variables for all uncertain
events are examined such that for each combination, the
relations 1 2

k k
l

k l
l 


    , 1 2, 1k kk     and

1 2, {0,1}k k k K     are satisfied. In these relations, K is the
set of all uncertain events. Moreover, it should be pointed out
that uncertain events in a solution could be considered in just
one form of its upper bound, its lower bound, or its mean
value. Therefore, the constraint 1 1 1,k k k    should be
held in the robust model.
Model (2):

1 2
1 1( ).Max z C C C X    (26)

. .s t

1 2 1 2
1 1 1 1( ).A A A X b b b        (27)

0X  (28)
Finally, each of the combinations that have the minimum

value of the objective function z is the robust solution of the
proposed approach. Hence, for solving Model (2), the vector
X acts as the variable of Model (2) and the values of 1

k
and 2

k are regarded as known parameters. Now, to convert
such nonlinear and combinatorial problem to a linear one,
first, the Dual of Model (2) is considered as Model (3):
Model (3)

1 2
1 1.( )MinV w b b b    (29)

. .s t
1 2 1 2

1 1 1 1.( ) ( )w A A A C C C        (30)
0w  (31)

It is known from the duality theorem that if a primal
problem is bounded and feasible (as we suppose for our
problem), then the dual problem is also bounded and has a
finite solution, and these two solutions are equal. So we can
substitute Model (2) with Model (3) into Model (1). This
yields to Model (4) as follow:
Model (4)

1 2

1 2

1 2

1 2

1 1

1
, {0,1}

.( )
k k

l
k l
k k

k k

l

k K
k K

Min MinV w b b b 

 

 
 



  

   
  

  
 (32)

. .s t
1 2 1 2

1 1 1 1.( ) ( )w A A A C C C        (33)
0w  (34)

The Min-Min model of Model (4) is equivalent to Model
(5), which are shown as the following. This model is a
mixed-integer non-linear model.
Model (5)

1 2
1 1.( )MinV w b b b    (35)

. .s t
1 2 1 2

1 1 1 1.( ) ( )w A A A C C C        (36)

1 2
k k

l
k l

l 


   (37)

1 2 1k k k K     (38)
0w  (39)

Until now, a min-max constraint two-level model has
been converted to an equivalent one-level model. However,
this new model is still nonlinear because in the following
terms, the nonlinear terms exist:

1 2 1 2 1 2
1 1 1 1 1 1.( ) ( ); .( )w A A A C C C w b b b            .

Also, the nonlinear terms
1 2 1 2

1 1 1 1.( ) ( )w A A A C C C       
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are the consequence of multiplying the vector w by matrix
1

1A
 or 2

2A
 . To get rid of such a nonlinearity term, a simple

conversation could be used. Indeed, the nonlinear terms
appeared in the forms of:

1 1 2
1 1 1 1 1 1 2 2. . ,..., . . , . . ,..., . . ,j nj j ja a a a

j n nj j n njw a w a w a w a    and
1 1

1 1 1 1 1 1 2 1. . ,..., . . , . . , ,..., . . .n nb b b b
n n n nw b w b w b w b    Therefore,

each nonlinear term composed of a positive variable
multiplied by a binary variable. To linearize such non-linear
terms, if we consider a term y.z in which y is a positive
variable and z is a binary variable, then the term y.z could be
replaced by the new variable u for which the following
constraint is exact:

.u y z

(40)
(1 ) (1 )y M z u y M z     

(41)
.u M z

(42)
Therefore, all nonlinear terms in Model (5) are converted

to linear ones using the constraint (40), (41) and (42) and the
resulting model is a mixed-integer linear programming
model that covers the idea of robustness in the proposed
approach.

C. Model Validation
As we claimed before, the proposed approach results in

robust solutions similar to Bertsimas and Sim's approach
particularly when there are no repeated or shared events in
the model constraints. This could be examined by
considering the following problem:
Problem (2):

41 2 3
 2 3 2max Z x x xx    (43)

. .s t

1 1 2 2 3 3 4 4
. . . . 50a x a x a x a x   
    (44)

1 1 2 2 3 3 4 4
. . . . 60b x b x b x b x   
   

(45)

2 41 3
20 ,  ,  ,x x xx  (46)

The value of the uncertain parameters in Problem (2)
is considered as Table IV:

TABLE IV. THE VALUE OF THE PARAMETERS IN PROBLEM (2)

i 1 2 3 4
ai 8 5 6 7

2 4 3 5

bi 6 4 8 7
3 2 4 6

Considering P1i and P2i as the related variables of the
uncertain parameters in the constraints (44) and (45) and

solving this model using [12] approach, the following results
as TableV will be obtained:

TABLE V. RESULTS OF THE PROBLEM (2) USING BERTSIMAS AND SIM
(2004) APPROACH

1 2,  1 2 3 4

Z 12 11.33 11 11
P1i>0
and
P2i>0

P14,P24
P12, P14,
P21,P22

P11, P12,
P14,P21, P22,

P23

P11, P12, P13,
P14 P21, P22,
P23, P24

The results of Table V indicate that in the optimal robust
solutions of Problem (2), when 1 2 1    , the parameters

4a
 and 4b


are in their critical values, when 1 2 2    , 2a

 ,

4a
 , 1 b


and 2b


are in their critical values and so on.

This problem could also be solved by the proposed
approach considering the following model:

1 2 3 4 5 650 60 2 2 2 2Min V w w w w w w     

. .s t
 

1 2 3 4 5 6
( , , , , , ) (2 3 2 1)w w w w w w A B C   

1 2 3 4
1 1 1 1
5 6 7 8
1 1 1 1

1 2 3 4
2 2 2 2
5 6 7 8
2 2 2 2

8 5 6 7 2 4 3 5
6 4 8 7 3 2 4 6
1 0 0 0 0 0 0 0

, ,
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

2 4 3 5
3 2 4 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A B

C

   
   

   
   

  
  
  
  

    
  
  
        

 
 
 
 

  
 
 
  
 

1 1 1 {1,2,3,4,5,6,7,8}k k k   

2 2 1 {1,2,3,4,5,6,7,8}k k k    

1 2 1
{1,2,3,4}

k k

k
 



  

1 2 2
{5,6,7,8}

k k

k
 



  

1 2, {0,1} {1,2,3,4,5,6,7,8}k k k    

1 2 3 4 5 6( , , , , , ) 0w w w w w w 

In this model, we have nonlinear terms
1 2. , . {1,2,3,4,5,6,7,8}k k

k kw w k    . For the above
terms, the variables 1 1 2 2. , .k k k k

k kz w z w   are defined,
and the constraints (55) - (58) are added to the above model
for the sake of linearization:
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1 1 1(1 ) (1 ) {1,2,3,4,5,6,7,8}k k k
k kw M z w M k        

2 2 2(1 ) (1 ) {1,2,3,4,5,6,7,8}k k k
k kw M z w M k        

1 1. {1,2,3,4,5,6,7,8}k kz M k  

2 2. {1,2,3,4,5,6,7,8}k kz M k  

Solving Problem (2) by the proposed approach yields the
results as Table VI.

TABLE VI. RESULTS OF PROBLEM (2) USING THE PROPOSED APPROACH

1 2,  1 2 3 4

V 12 11.33 11 11

| 1
1,2

k k
u u

u k
  

 

4 8
2 1,  2 4

2 1, 

5 6
1 1, 

1 2 4
2 2 2, ,  
5 6 7
1 2 2, ,  

It is seen in Table VI that the results of the proposed
approach are the same as [12] approach. For example, in
both approaches, when 1 2 2    the uncertain
parameters 2a

 , 4a
 , 1 b


and 2b


are appeared with their critical

value in the optimal robust solution. Moreover, the objective
function value of both approaches is the same for different
values of 1 and 2 . However, this problem has not any
shared events. To show the validity of the model for the
problem with the shared uncertain events, we come back to
Problem (1) and show how the proposed approach could
solve the challenges of inconsistency addressed in that
problem.

In Problem (1), the parameters di's were uncertain. For
each di, two binary variables 1

i and 2
i could be defined

that has a description as before. Using Model (5), the robust
model of Problem (1) will be as follow:

. 51 2 3 4Min V C w w w w w     (9)
. .s t

1 1
1 2 3 4 5 1 1 1 1 1 1 1 2

2 2 3 3
2 2 2 2 1 2 2 2 3 3 3 3 1 3 3 2

4 4
4 4 4 4 1 4 4 2

1 1 2 2 3 3 4 4

ˆ ˆ( , , , , ).( ) ( . . . . .
ˆ ˆ ˆ ˆ. . . . . . . . . .
ˆ ˆ. . . . .

. . . .
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,
, ,
)

:

w w w w w A B C c d c d c d

c d c d c d c d c d c d

c d c d c d

a d a d a d a d

where

A

B

 

   

 

    

   

 

 
 
 
 
 
 
 
 



1 2 3 4
1 1 1 2 2 1 3 3 1 4 4 1

2 2 3 4
1 1 2 2 2 2 3 3 2 4 4 2

ˆ ˆ ˆ ˆ. . . . . . . .
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ˆ ˆ ˆ ˆ. . . . . . . .
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a d a d a d a d

a d a d a d a d

C

   

   

 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

(60)

1 2
{1,2,3,4}

k k

j
 



   (61)

1 10 {1, 2, 3, 4, 5}, , {0,1}

{1,2,3,4}

k kjjw

k

    

 
(62)

Using the data in Table (1) and solving the shown model
in (59) – (62), the results for different value of  will be as
Table VII:

TABLE VII. RESULTS OF PROBLEM (1) USING THE PROPOSED APPROACH

 1 2 3 4
V 112 97 85 77
1
i =1 1

4
1
1 , 1

4
1 1 1
1 3 4, ,   1 1 1 1

1 2 3 4, , ,   

As the results in Table VI indicate when 2  the
objective function will be equal to 104 and the variable 1

1

and 4
1 will take value equal to one in the optimal solution

which indicates the parameters 1d


and 4d


in the robust
solution will take their lower bound values. It is clear that the
value of the objective function has been improved using the
new method. This can be explained by the fact that in [12]
approach,  uncertain parameters considered by their
critical values in both the objective function and the
constraint. However, because the objective function and the
constraint in Problem (1) are dependent, some parameters
value that makes the objective function the worst may lead to
a better feasible space for the variables and, in turn, make
eligible points feasible.

V. DISCUSSION

In this section, some applications of the proposed
approach in the real world problems are discussed. The first
regarded example is the study of [35]. They considered a two
objective model for minimizing the cost and risk of
transportation in a network of hazard material supply chain.
In that article, the risk was measured as the sum of risks in
all paths of the network. Also, a threshold for acceptable risk
of each path was considered. In that study, if the risk per
shipment is considered as an uncertain parameter, it is clear
that this parameter exists in both objective function and the
constraints related to the maximum allowed risk of each path.
The proposed robust approach suggested in this paper apply
to this problem. So, the first application of the proposed
approach is for the problems in which some limitations exist
on the objective functions as the model constraints.
Minimizing the cost of investment by imposing a limitation
on the budgets of different investment areas is another
example of this type [36].

The demand for products and services plays a vital role
in business models. This parameter takes various forms in
mathematical models of problems. In some problems, it
affects variables such as the number of vehicles, the
responded demands of customers, the reached level of
quality or reliability, etc. Also, it may appear as a right-hand
side parameter in the model constraints [37]. When the latter

2 2 3 4
1 2 1 2, , ,   

5 6 7 8
1 2 1 1, , ,   

1,
2,3, 4
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is the case, it should be noted that there is only one such
uncertain parameter in a constraint — so defining the level of
protection against uncertainty as (the parameters related to
the confidence level in [12] in a constraint with just one
uncertain parameter is meaningless. Actually, in this case,
this parameter can be regarded as a critical parameter or not.
As we mentioned in section (3), the concept of "uncertainty
set" can be more interpretable in this case. For example, the
"demand set" could be regarded as a set that includes all
customers' demand for products. Hence, by labeling these
parameters as binary variables and considering the protection
level  for the parameters in the demand set, the concept of
robustness and protection level against uncertainty is seemed
to be more desirable and applicable. Another example of the
"uncertainty set" is the processing time of works on
machines in the job shop and flow shop scheduling problems.
This parameter might be uncertain and shared between the
model constraints [38]. Again, by defining "processing time
set," the concept of robustness can be extended to these
problems. The project scheduling problem (PSP) could be
considered [39] as another type of problem with common
uncertain parameters. In this problem, the duration of
activities in a project network can be regarded as a shared
uncertain parameter. In the precedence constraints of this
problem, only one duration time exists. Also, the duration
time of an activity is shared between the precedence
constraints of all its processors. Therefore, in this problem,
"activity duration set" could be defined and the protection
against uncertainty could be considered for this set of
parameters.

VI. CONCLUSION

In this research, a new robust optimization approach has
been introduced for the problems with uncertain parameters
in which these parameters are shared between the model
constraints and objective function. The situations in which
this model is useful were discussed, and the model validity
was shown using numerical examples. It was shown that the
suggested Min-Max strategy could prepare less conservative
solutions than a fully conservative approach. It was also
shown that this procedure yields the results the same as [12]
approach when there is no shared parameter in a problem.
However, in the problems with shared uncertain parameters,
[12] had some inconsistencies, which can be fixed by the
proposed approach. Also, we utilized the concept of
"uncertainty set" that extends the concept of robustness to
the sets with the same type of parameters. For future research,
the implementation of the proposed approach for real-world
problems is suggested.
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