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Comparing Samples from the G0 Distribution

using a Geodesic Distance

Alejandro C. Frery, Juliana Gambini

Abstract

The G0 distribution is widely used for monopolarized SAR image modeling because it can charac-

terize regions with different degree of texture accurately. It is indexed by three parameters: the number

of looks (which can be estimated for the whole image), a scale parameter and a texture parameter. This

paper presents a new proposal for comparing samples from the G0 distribution using a Geodesic Distance

(GD) as a measure of dissimilarity between models. The objective is quantifying the difference between

pairs of samples from SAR data using both local parameters (scale and texture) of the G0 distribution.

We propose three tests based on the GD which combine the tests presented in [20], and we estimate

their probability distributions using permutation methods.

Keywords: Geodesic Distance, Dissimilarity Measure, G0 Distribution

I. INTRODUCTION

Automatic detection of differences between samples from SAR (Synthetic Aperture Radar)

images is both challenging and necessary. It has important applications in, among others, urban

planning [28], disaster management [7], emergency response [29], environmental monitoring,

and ecology [16]. The main idea is developing methods for automatic discrimination of regions

with different levels of texture and/or roughness. As in [13], [14], we adopt the G0 distribution

as model for the data.
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The G0 distribution is widely used for monopolarized SAR image modeling because it can

characterize different regions accurately. It is indexed by three parameters: the number of looks

L (which can be estimated for the whole image), a scale parameter γ, and a texture parameter

α. The last two are local parameters and relate directly to the target.

Nacimento et al. [21] obtained test statistics based on Information Theory to assess the null

hypothesis that two samples were produced by the same G0 law, provided the same number of

looks is known. The approach consisted of first computing h-φ divergences between the models,

indexing their symmetrized versions with maximum likelihood estimates and scaling appropri-

ately to obtain test statistics. These tests, under mild regularity conditions, follow asymptotically

χ2 laws. These divergences and associated test statistics were successfully applied to region

discrimination [27], segmentation [18], and parameter estimation [12].

Two issues make their use somewhat difficult, though, namely (i) they require the numerical

integration of expressions that, more often than not, involve special functions, and (ii) the choice

of the particular test statistic might be considered arbitrary (different choices of the functions h

and φ lead, among infinitely many others, to the Kullback-Leibler, Hellinger, Bhattacharya, Tri-

angular, Harmonic, Jensen-Shannon, and Rényi of order β divergences). The Geodesic Distance

solves the second difficulty, as it is unique, and gives a partial solution to the first one.

The Geodesic Distance can be used to measure the difference between two parametric dis-

tributions. It was presented by Rao [24], [25], and since then it has been studied by several

authors [1], [19], [31]. In Ref. [17], [30], it is used as measure of contrast between samples by

means of statistical tests presented in [19], [21], [26], where the authors demonstrated that its

distribution is χ2
1.

To the best of the authors’ knowledge, there is no closed expression for the geodesic distance

between two G0 models with both α and γ unknown, given L. In this work, we analyze several

statistical hypothesis tests depending on both parameters to discriminate two samples from G0

models with both parameters unknown. We use permutation methods to estimate the distribution

of such tests statistics since no explicit results are available.

The paper unfolds as follows. Section II recalls properties of the G0 model, including parameter

estimation by maximum likelihood. Section III presents the expressions for the GD with one

parameter known. Section IV analyzes the behavior of the test statistics based on a known

parameter. In Section V we study the more realistic situation of estimating both scale and texture,
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while assuming known the number of looks. Finally, in Section VI we present conclusions and

outline future work.

II. SAR IMAGERY AND THE G0 MODEL

Under the multiplicative model, the return in monopolarized SAR images can be modeled as

the product of two independent random variables, one corresponding to the backscatter X and

other to the speckle noise Y . In this manner, Z = XY models the return Z in each pixel. For

monopolarized data, speckle Y is modeled as a Γ distributed random variable with unitary mean

and shape parameter L, the number of looks. A good choice for the backscater distribution X

is the reciprocal of Gamma Γ−1(α, γ) law that gives rise to the G0 distribution for the return

Z [11]. The mathematical tractability and descriptive power of the G0 distribution make it an

attractive choice for SAR data modeling [22]. The probability density function for intensity data

under the G0(α, γ, L) distribution is:

fG0(z) =
LLΓ(L− α)

γαΓ(−α)Γ(L)

zL−1

(γ + zL)L−α
, (1)

where −α, γ, z > 0 and L ≥ 1. If α → −∞, the G0 distribution becomes an exponential law.

The r-order moments are given by

E(Zr) =
(γ
L

)rΓ(−α− r)
Γ(−α)

Γ(L+ r)

Γ(L)
. (2)

To simplify calculation and with the intention of obtaining comparable results, in most exper-

iments, we deal with a restricted case which assumes E(Z) = 1.

Using that Γ(L+ 1) = LΓ(L) and that Γ(−α) = (−α− 1)Γ(−α− 1) in (2), assuming L = 1

and imposing E(Z) = 1 we find the following relation between α and γ:

γ∗ = −α− 1.

Then, the random variable Z with G0
I (α, γ

∗, 1) distribution has unitary mean. This allows us to

simplify the calculations and to obtain results which do not depend on image brightness.

One of the essential features of the G0 distribution is the ability to interpret its parameters. The

α parameter is a texture parameter, which is related to the roughness or number of elementary

backscatterers of the target. Values close to zero (typically above −3) suggest extremely textured

targets, as urban zones. As the value decreases, it indicates regions with moderate texture (usually

α ∈ [−6,−3]), as forest zones. Textureless targets, e.g. pasture, usually produce α ∈ (−∞,−6).
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The γ parameter of the G0 distribution is a scale parameter, that is, if W ∼ G0(α, γ, L), then

γ−1W ∼ G0(α, 1, L).

Fig. 1 shows the densities of G0(α, γ∗, 1) distributions for α ∈ {−∞,−8,−3,−1.5} (black,

maroon, green, red, respectively) in linear (Fig. 1(a)) and semi-logarithmic (Fig. 1(b)) scales.

0

1

2

3

0 1 2 3

Intensity

D
en

si
ty α value

−1.5
−3
−8
−Infinite

(a) Densities in linear scale

1e−05

1e−03

1e−01

0 5 10 15

Intensity

D
en

si
ty

 (
lo

g 
sc

al
e)

α value
−1.5
−3
−8
−Infinite

(b) Densities in semilogarithmic scale

Fig. 1. Densities of G0(α, γ∗, 1) distributions for α ∈ {−∞,−8,−3,−1.5} (black, maroon, green, red, respectively).

The difference between these densities becomes more apparent in semi-logarithmic scale,

where the limiting distribution (for α → −∞ ) appears as a straight line. The larger α is, the

more prone the random variable to produce extreme values is.

Given the sample z = (z1, . . . , zn) of independent and identically distributed random variables

with common distribution G0(α, γ, L) with (α, γ) ∈ Θ, Θ = R− ×R+, a maximum likelihood

estimator of (α, γ) satisfies

(α̂, γ̂) = arg max
(α,γ)∈Θ

L(α, γ, L, z),

where L is the likelihood function under the G0(α, γ, L) distribution. This leads to α̂ and γ̂ such

that

n[Ψ0(−α̂)−Ψ0(L− α̂)] +
n∑
i=1

ln
γ̂ + Lz2

i

γ̂
= 0 (3)

nα̂

γ̂
+ (L− α̂)

n∑
i=1

(γ̂ + Lzi)
−1 = 0, (4)

where Ψ0(t) = d ln Γ(t)/dt is the digamma function. In many cases no explicit solution for

this system is available and numerical methods have to be used. In this work, we applied the
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BFGS [4] optimization algorithm.

III. GEODESIC DISTANCE BETWEEN G0 MODELS

Naranjo-Torres et al. [20] obtained two cases of geodesic distances between G0 distributions

with a known number of looks: the cases where either the texture or the scale is known. These

are given, respectively by

s(α1, α2) =

∣∣∣∣∣∣
∫ α2

α1

√√√√ L∑
n=1

(−α + n− 1)−2 dα

∣∣∣∣∣∣ , and by (5)

s(γ1, γ2) =

∣∣∣∣∣
√

−αL
−α + L+ 1

ln
γ1

γ2

∣∣∣∣∣ . (6)

The first equation can be solved explicitly for L = {1, 2}:

s(α1, α2)
∣∣∣
L=1

=

∣∣∣∣ln α1

α2

∣∣∣∣ , and

s(α1, α2)
∣∣∣
L=2

=

∣∣∣∣ln α2
1(α2 − 1)2(α2R2 − 1)((α1 − 1)R1 + 1)

α2
2(α1 − 1)2(α1R1 − 1)((α2 − 1)R2 + 1)

+
√

2 ln
1 + α2(R2 − 2)− α2

2R2

1 + α1(R1 − 2)− α2
1R1

∣∣∣∣ ,
where R1 = R (α1) and R2 = R (α2) are given by

R (α) =

√
4α2 − 4α + 2

(α− 1)2α2
.

Notice that s(γ1, γ2) depends on the texture α, while s(α1, α2) is independent of the scale γ.

Both (5) and (6) depend on the number of looks L.

To the best of the authors’ knowledge, there is no closed expression for the geodesic distance

between two G0 models with both α and γ different, given L known.

Both distances can be turned into test statistics (see [17], [30]) by indexing with maximum

likelihood estimators based on samples of sizes m and n, and then rescaling:

T =
mn

m+ n
ŝ2.

We will denote

Tα =
mn

m+ n

(
s(α̂1, α̂2)

)2
, and (7)

Tγ =
mn

m+ n

(
s(γ̂1, γ̂2)

)2
. (8)
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Under the null hypothesis of equal parameters, when m,n→∞ proportionally, both Tα and Tγ

follow a χ2
1 distribution, so it is possible to compute the p-value of two samples under H0 and

either reject or not this hypothesis [19].

Section IV presents an analysis of the behavior of these test statistics Tα and Tγ . Section V

studies ways of combining them to produce a two-parameter test.

IV. ANALYSIS OF ONE-PARAMETER TESTS

In this Section, we analyze the finite sample size behavior of the test statistics defined in (7)

and (8) using Monte Carlo experiments. We obtained the samples following the guidelines

presented in Ref. [6].

The parameter space for the first experiment was α = −1.5 and the same sample size

n ∈ {50, 100, 150, . . . , 1000} for γ = 1 and L = 1. We obtained five thousand independent

replications for each sample size, and maximized the following reduced log-likelihood function:

`(α; γ, L, z) = n[log Γ(L− α)− α log γ − log Γ(−α)] + α
n∑
i=1

log(γ + Lzi). (9)

We produced two independent samples in each replication in order to compute a distance from

the respective estimated models.

Fig 2(a) presents the sample densities of α̂ for γ = 1 and L = 1. They are all centered

around the true value α = −1.5 and, as expected, the larger the sample size n is, the smaller the

variability is. Small values of n yield more asymmetric densities than their larger counterpart.

The parameter space and number of replications for the second experiment were the same, but

the reduced log-likelihood to be maximized was

`(γ;α,L, z) = −nα log γ + (α− L)
n∑
i=1

log(γ + Lzi). (10)

Similar conclusions can be drawn from the sample densities of the maximum likelihood

estimators of γ, when α and L are known; cf. Fig. 2(b).

The behavior shown in Fig. 2 is consistent across other values of α and γ. Both (9) and (10),

as well as the two-parameter reduced log-likelihood function presented below were optimized

using the maxLik routine [15] available in R [23].

Figures 3(a) and 3(b) show the proportion of estimates whose error is larger than 0.10, 0.11,

0.12, 0.13, when the γ parameter is known and when the α parameter is known, respectively.
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(a) Sample densities of α̂.
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(b) Sample densities of γ̂.

Fig. 2. Estimated densities of maximum likelihood estimators of α and γ, when only one parameter is unknown and L = 1.

The experiment consists of generating 5000 samples of size n = {50, 100, 150, . . . , 1000}, with

G0
I (α, γ, L) distribution. In this case α = −1.5, γ = 1, L = 1. It can be observed that the

proportion of estimates with error dramatically decreases as the sample size increases. This

evidences that bias of the maximum likelihood estimates strongly depends on the sample size.

Sample sizes greater than or equal to 750 provide acceptable results but, in practical situations,

one is often interested in smaller samples, e.g. for filters which compute estimates over windows

of size 7× 7. The selected values of the parameters are arbitrary, in order to show an example

of the maximum likelihood estimator behavior as the sample size increases.
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(a) Proportion of estimates of α whose error is larger than 0.10,
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Fig. 3. Proportion of α and γ test statistics with errors larger than 0.10, 0.11, 0.12, 0.13.
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As said, in each replication two independent samples were generated, and an estimate com-

puted with each. Each pair of estimates is then used to compute either Tα or Tγ , depending on

the experiment. Our main interest lies in the finite sample behavior of these test statistics.

A. Finite Sample Size Behavior of Tα

For each sample size, we have five thousand samples of Tα. We will analyze the distribution

of these test statistics, and the empirical size of the test when compared with the asymptotic

result.

Fig. 4(a) shows the boxplots of the Tα test statistics for different sample sizes, along with the

theoretical cut value at 95 % (approximately 3.841 459, the 0.95 quantile of the χ2
1 distribution).
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Boxplots of Test Statistics for α when γ is known

(a) Boxplots of Tα for γ known.
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(b) Boxplots of Tγ for α known.

Fig. 4. Boxplots of tests statistics.

Fig. 5(a) shows the sample densities of the Tα test statistics for different sample sizes, along

with the theoretical cut value at the 95 % (approximately 3.841 459, the 0.95 quantile of the χ2
1

distribution).

Neither Fig. 4(a) nor Fig. 5(a) suggest any significant change of distribution of Tα when the

sample size varies, an evidence that n = 50 is a large enough sample size to attain the asymptotic

properties.

Fig. 6(a) presents the empirical size of Tα tests for different sample sizes, along with the

theoretical cut value. The minimal and maximal deviation between the empirical and theoretical

p-values are, respectively, 0.4 % and 13.2 %.
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B. Finite Sample Size Behavior of Tγ

For each sample size, we have five thousand samples of Tγ . We will analyze the distribution

of these test statistics, and the empirical size of the test with respect to the asymptotic value.

Fig. 4(b) shows the boxplots of the Tγ test statistics for different sample sizes, along with

the theoretical cut value at the 95 % (approximately 3.841 459, the 0.95 quantile of the χ2
1

distribution). Fig. 5(b) shows the sample densities of the Tγ test statistic, for different sample

sizes, along with the theoretical cut value at the 95 % (approximately 3.841 459, the 0.95 quantile

of the χ2
1 distribution).

0.0

0.3

0.6

0.9

0 2 4 6

Test Statistics

E
m

pi
ric

al
 D

en
si

tie
s

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

Empirical Densities of Test Statistics for α when γ is known

(a) Empirical densities of Tα, for γ known.
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(b) Empirical densities of Tγ , for α known.

Fig. 5. Empirical densities of tests statistics.

Neither Fig. 4(b) nor Fig. 5(b) suggest any significant change of distribution of Tγ when the

sample size varies, evidence that n = 50 is a large enough sample size to attain the asymptotic

properties. This motivates the use of a single model, namely the χ2
1 distribution, for computing

quantiles.

Figs. 6(b) presents the empirical size of Tγ test for different sample sizes, along with the

theoretical cut value. The minimal and maximal deviation between the empirical and theoretical

p-values are, respectively, 1.2 % and 12.8 %.

V. ANALYSIS OF TWO-PARAMETER TESTS

In this section, we analyze the more realistic situation of estimating both the scale and texture

parameters, while assuming the number of looks known. As mentioned, we opted for computing
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(b) Empirical p-values of Tγ , α known.

Fig. 6. Empirical size of tests statistics.

(α̂, γ̂) the maximum likelihood estimator of (α, γ) by maximizing the reduced log-likelihood

function which, for L known, is

`(α, γ;L, z) = n[log Γ(L− α)− α log γ − log Γ(−α)] + (α− L)
n∑
i=1

log(γ + Lzi). (11)

Again, the routine maxLik was the tool employed for maximizing (11).

Whereas maximizing (9) and (10) poses no numerical problem, (11) has well-reported prob-

lems caused by cases where this likelihood becomes flat [10]. In order to avoid such problems

without introducing specialized techniques that depart from the concept of maximum likelihood,

only solutions satisfying (α̂, γ̂) ∈ [15α, 0)× (0, 15γ] where considered feasible. The number of

replications is computed over feasible solutions.

The parameter space of the study is the product of the sets α ∈ {−1.5,−3,−4}, L ∈ {1, 2},

and n ∈ {50(100)950, 5000}. For each α, the scale is γ = −α − 1, so the expected value is 1.

Following the recommendations discussed in [5], the number of replications changes with the

sample size as R = [Rmax/n]; we empirically found Rmax = 5 × 106 produces reliable results

with an acceptable computational cost.

The plots in Fig. 7 show the empirical densities of the estimators of texture and scale, Fig. 7(a)

for the case α = −1.5, γ = 0.5 and L = 1, Fig. 7(b) for the case α = −3, γ = 2 and L = 1.

The difference between Figs. 2(a) and 7(a) is noticeable in terms of spread and centrality.

The same observation holds when comparing figures 2(b) and 7(b). The effect of missing the

information of one parameter is, thus, remarkable.
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(b) Empirical densities of γ̂.

Fig. 7. Empirical densities of estimators when only L = 1 is known, α = −3 and γ = 2.

Fig. 8 shows the contour plots of the estimates (α̂, γ̂) for samples of size n = 50 and all the

cases here considered. This figure corroborates that it is not adequate to assume that α̂ and γ̂

can be uncorrelated, let alone independent.

This relationship between estimators is also exhibited by the tests statistics that use them.

Fig. 9 shows the contour plots of (Tα, Tγ).

In practice, one needs to discriminate regions with unknown texture and scale, so a test statistic

for both parameters, say Tα,γ is required.

The strong relationship between α̂ and γ̂ is evident, so is the same relationship between test

statistics, therefore just adding Tα and Tγ and assuming that the sum follows a χ2
2 law might not

be a good idea. This justifies the following analysis which aims at finding relevant properties

of two-to-one transformations of (Tα, Tγ)→ Tα,γ , in search for a test statistic for assessing the

null hypothesis of having two samples from the same G0 distribution. We analyze the following

test statistics:

T 1
α,γ =

√
T 2
α=(α̂1+α̂2)/2 + T 2

γ , (12)

T 2
α,γ =

Tα=(α̂1+α̂2)/2 + Tγ
2

, (13)

T 3
α,γ = max

{Tα=(α̂1+α̂2)/2

Tγ
,

Tγ
Tα=(α̂1+α̂2)/2

}
(14)

Eqs. (12), (13) and (14) are combinations of statistics for a single free parameter, given in

Eqs. (7) and (8), but their distributions are unknown and, thus, we can not apply a hypothesis
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Fig. 8. Contour plots of (α̂, γ̂) for all the cases considered and samples of size n = 50.

test to decide if two samples come from the same distribution or not. So, to solve this problem,

we estimate these distributions using permutation methods, as explained in Section V-A.

A. Permutation Methods

Permutation methods are a type of statistical significance test which can be applied to statistics

with unknown distribution. They were developed by R. Fisher and E. J. G. Pitman [9]. The

authors of Refs. [2], [3] explain the advantages of this type of tests. There are at least two kinds

of permutation tests:

Exact: in which all possible reorganizations of the sample are considered. This kind has

high computational cost, depending on the sample size.

Random: which consider a certain amount of permutations, usually 1000 or 10000. They are

more appropriate if the sample size is large.
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Fig. 9. Contour plots of (Tα, Tγ) for all the cases considered and samples of size n = 50.

In this work we test if two samples X ∼ G0(α1, γ1, L) and Y ∼ G0(α2, γ2, L) are from the

same distribution, then we pose the null hypothesis H0 : (α1, γ1) = (α2, γ2) and we want to

know the probability of rejecting it. With this objective, we estimate the empirical distributions

of the tests T iα,γ, i = 1, 2, 3 from equations (12), (13) and (14) by means of the following steps.

For more information see [8].

1) Choose a statistic T iα,γ , i = 1, 2, 3 from Eqs. (12), (13) or (14).

2) Generate z1 and z2 random samples of sizes m and n, respectively, both from the same

G0(α, γ, L) distribution granting the null hypothesis. Let perm be the number of permuta-

tions; in our experiment perm = 1000.

April 30, 2019 DRAFT



14

3) Compute the estimates (α̂1, γ̂1) and (α̂2, γ̂2) with each sample.

4) Calculate the observed statistic value, T iα,γ , with the data from z1 and z2.

5) Repeat for k = 1, . . . , perm:

• Shuffle de joint sample z = (z1, z2) and divide it in two groups of sizes m and n,

say zk1 and zk2 , respectively.

• Compute the estimates (α̂1, γ̂1) and (α̂2, γ̂2) for each sample zk1 and zk2 .

• Calculate the statistic value using the permuted samples, T pα,γ(k).

• Compare the observed statistic value calculated in Step 4 with the statistic computed

after permutation T pα,γ(k).

6) The proportion of differences equal to or larger than the observed statistic value serve as

the p-value for the permutation test, or:

p-value =
#{k : T pα,γ(k) ≥ T iα,γ}

perm
. (15)

7) If p-value < η, the null hypothesis is rejected at level η.

B. Results of applying Permutation Methods

We use devised Monte Carlo experiments to quantify empirical rejection rate (R-rate) generated

by the proposed tests, under the Null Hypothesis. The experiment is repeated 500 times.

Table I shows the results of applying the permutation test to the statistic given in Eqs. (12),

(13) and (14), for values of L = {1, 2}, α = {−1.5,−4} and γ = −α−1, at level η = 0.05. For

lack of space, we present only the results for n = 50, n = 550 and n = 5000, corresponding to

small, medium and large samples. We inform the rejection rate under the null hypothesis (false

negative rate) which is the estimated test size. Tests T 1 and T 2 exhibit the closest empirical

sizes to the nominal level. It can be observed that if the sample size increases, the false negative

rate is not necessarily reduced.

Figure 10 shows the false negative rate for the test in Eqs. 14, under the Null Hypothesis

depending on the sample size, for α = −1.5, γ = 0.5, L = 1. It can be observed that the false

negative rate fluctuates around the value of the level η = 0.05, represented with a green straight

line and the highest value of the false negative rate is given for the sample size n = 50.
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TABLE I

REJECTION RATES FOR THE PROPOSED STATISTICS UNDER THE NULL HYPOTHESIS.

L α n R-rate T 1 R-rate T 2 R-rate T 3

1 −1.5

50 0.048 0.058 0.075

550 0.056 0.050 0.051

5000 0.044 0.048 0.058

1 −4

50 0.046 0.046 0.049

550 0.056 0.056 0.045

5000 0.046 0.046 0.050

2 -1.5

50 0.060 0.056 0.05

550 0.052 0.052 0.043

5000 0.052 0.042 0.059

2 -4

50 0.06 0.060 0.051

550 0.038 0.038 0.035

5000 0.048 0.048 0.055

C. Application in Edge Detection

In this section, we present an application of the proposed method to the problem of edge

detection in actual SAR images. Gambini et al. [14] proposed a general and flexible algorithm

for edge detection which is based on finding, in a narrow strip of data, the point where there is

maximum evidence of a change of properties. Naranjo-Torres et al. [20] used a geodesic distance

between models as a measure of this change, assuming the G0
I distribution with known scale

parameter. In this work, we use the same algorithm but considering two parameters unknown:

texture α, and scale γ. In order that this work is self-contained, we briefly explain the algorithm.

For more information see [20].

Let I be an actual SAR image of m lines and n columns of pixels. In this application, we use

only one line of data, i.e., a strip of size 1× n. In each step 3 ≤ k ≤ n− 3, we divide the line

in two disjoint samples, S1(k) = (z1, . . . , zk) and S2(k) = (zk+1, . . . , zn) used to estimate the

parameters (α̂1, γ̂1)(k) and (α̂2, γ̂2)(k), respectively, by maximum likelihood. Then, the p-value

p(k) is computed using the method described in Section V-A.

Finally, we estimate the transition point as the position at which p(k) is minimum: ĉol =

arg mink p(k). The method is sketched in Algorithm 1, where I is the original image, m and n
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Fig. 10. False Negative Rate depending on the sample size, under the Null Hypothesis.

are the numbers of rows and columns of the input image. Notice that the minimum sample size

is set to three observations.

Figure 11 shows the results of applying the edge detector algorithm. Figure 11(a) shows the

SAR image, and presents the area where the edge detection was performed. Figure 11(b) shows

the result of applying the edge detector to each line in a selected region.

VI. CONCLUSIONS AND FUTURE WORK

Unable to calculate the geodesic distance of the G0 distribution depending on two free param-

eters, we carried out a study dedicated to evaluating the possibility of using a combination of

tests based on the geodesic distance with a single unknown parameter, as calculated in Ref. [20].

We compare three statistics whose distributions are unknown. We use permutation methods

to estimate their empirical distributions.

The results show that, under the null hypothesis, the false negative rate fluctuates around the

rejection level, even with small samples. It can be observed that if the sample size increases, the

false negative rate is not necessarily reduced; this encourages us to continue the investigations
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Algorithm 1: Edge Detection by the geodesic distance of the G0
I distribution with two

unknown parameters.
1: input: I , m, n

2: for each line of I , i = 1, . . . ,m do

3: for k = 3, . . . , n− 3 do

4: Divide the line in two samples S1(k) = (z1, . . . , zk) and S2(k) = (zk+1, . . . , zn).

5: Estimate (α, γ) by maximum likelihood in each sample, obtaining (α̂1, γ̂1)(k) and

(α̂2, γ̂2)(k).

6: Compute T (k) = Tα̂(k),γ̂(k) using Eqs. (12), (13) or (14).

7: Consider the array of statistics between the pairs of samples:

T = {T (k), 3 ≤ k ≤ m− 3} and compute the array of p-values

P = {p(k), 3 ≤ k ≤ m− 3}.

8: Find the column where the array P is minimized, which corresponds to the transition

point on the line i:

ĉol = arg min
k

p(k),

9: end for

10: end for

with small samples. The results are promising and can be readily employed in speckled image

processing and analysis.

APPENDIX

Simulations were performed using the R language and environment for statistical computing

version 3.0.2 [23].

REFERENCES

[1] C. Atkinson and A. F. Mitchell. Rao’s distance measure. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002),
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