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Abstract. It is proved that, for a prime number p, showing that
an n-element matroid is not representable over GF(p) requires only
O(n2) rank evaluations.

1. Introduction

We prove the following theorem.

Theorem 1.1. Let p be a prime number. Then proving that an n-
element matroid is not GF(p)-representable requires at most O(n2) rank
evaluations.

Theorem 1.1 is a corollary of a more technical result. This techni-
cal result — stated as Theorem 3.1 — gives sufficient conditions for a
matroid to have a certificate of non-representability over a finite field
using at most O(n2) rank evaluations. That these sufficient condi-
tions are satisfied for prime fields follows from results in two other
papers. The first is a theorem of Geelen and Whittle [6] that shows
that matroids satisfying a certain strengthening of 3-connectivity have
a bounded number of inequivalent GF(p)-representations. The second
is a theorem of Ben David and Geelen [2] that shows that excluded
minors for GF(p)-representability cannot have arbitrarily long nested
sequences of separations of bounded order, in particular they cannot
have long nested sequences of 3-separations. Theorem 3.1 is stated at a
higher level of generality than we need for this paper. It is hoped that
by doing this it may prove to be a useful tool in a future extension of
Theorem 1.1 to the non-prime case.

Before proceeding to the technicalities we give some background to
the problems addressed by this paper. In general it is not possible
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to describe matroids with an input that is polynomial in the size of
the ground set — there are far too many matroids. Because of this,
it is common to consider oracles, typically rank oracles. The oracle
has a matroid M in mind and we can ask the oracle for the rank
of any subset that we care about. A call to the oracle counts as a
single step in an algorithm. Seymour [12] showed that, in general,
it requires exponentially many calls to a rank oracle to decide if a
matroid is binary. Seymour’s techniques can be generalised to obtain
an analogous negative result for any other field. While this extension
is widely known in the matroid community, as far as we know it does
not appear in print and we give the details in Section 2.

The situation for certifying non-representability is much more hope-
ful. Consider binary matroids. We know [14] that U2,4 is the unique
excluded minor for binary matroids. It is also the case that a matroid
can be proved to have a U2,4-minor using eight rank evaluations. There-
fore a matroid can be proved to be non-binary using only O(1) rank
evaluations. Rota [11] conjectured that for each finite field F, there are,
up to isomorphism, only finitely many excluded minors for the class of
F-representable matroids. If Rota’s Conjecture were true, then it would
require only O(1) rank evaluations to certify non-representability for
matroids over any finite field. While evidence is accumulating for the
truth of Rota’s Conjecture, to date it is still only known to hold for
GF(2), GF(3) [1, 8, 13] and GF(4) [4]. 1

An alternative approach to finding a short proof that a matroid is
not binary is to attempt to build a binary matrix A with the property
that M is binary if and only if M = M [A]. Such a matrix can easily
be constructed by choosing a basis B = (b1, b2, . . . , br) and considering
basic circuits relative to B: the element aij of A is nonzero if and only
if bi is in the basic circuit of the element labelling the ith column of
A. Moreover, it can be shown that M 6= M [A] with a single rank
evaluation. This is an approach that has the potential to be extended
to other fields, and does not rely on the truth of Rota’s Conjecture.

The problem with extending this technique to other fields is that, in
general, a matroid may have many inequivalent representations over a
field. Recall that two F-representations of a matroid M are equivalent
if one can be obtained from the other by elementary row operations
(adding one row to the other, adjoining or deleting a row of zeroes,
and scaling a row) and column-scaling. For very small fields one can

1Since this was written, Geelen, Gerards and Whittle have announced that they
have a proof of Rota’s Conjecture. However is will be several years before the proof
is fully written.
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control the number of inequivalent representations of a matroid. Indeed
matroids are uniquely representable over GF(2) and GF(3). Moreover
Kahn [7] showed that 3-connected matroids have at most two inequiv-
alent representations over GF(4) (or are uniquely representable if field
automorphisms are allowed). In [10] it is shown that 3-connected ma-
troids have at most six inequivalent representations over GF(5). This
is a key ingredient in the proof given in [5] that O(n2) rank evaluations
suffice to prove that a matroid is not GF(5)-representable.

Unfortunately for fields with more than five elements, no bound can
be placed on the number of inequivalent representations of 3-connected
matroids. But, as noted earlier, it follows from results in [6] that the
number of inequivalent representations of a matroid over a fixed prime
field GF(p) becomes bounded if one raises the connectivity somewhat.
We also need to ensure that whatever connectivity we are dealing with
is possessed by excluded minors for GF(p). This assurance is a con-
sequence of the previously mentioned result [2] where it is shown that
excluded minors over GF(p) do not have arbitrarily long nested se-
quences of 3-separations.

2. Certifying GF(q)-representability

In this section we give examples showing that there is no succinct
certificate for representability over any finite field. Specifically, we show
that, for some α > 1, proving GF(q)-representability for n-element
matroids requires at least αn rank-values in the worst case. These
examples are related to results of Seymour [12] who showed that there is
no efficient algorithm to determine whether or not a matroid is binary.

Let n ≥ 3 be an integer and let N be a rank-n matroid with ground
set {t, a1, b1, a2, b2, . . . , an, bn} such that

(i) {t, ai, bi} is a triangle for all i ∈ {1, 2, . . . , n}, and
(ii) r(∪j∈J{aj, bj}) = |J | + 1 for every proper subset J of
{1, 2, . . . , n}.

Then the matroid M = N\t is a rank-n spike. Each pair {ai, bi} is a leg
of the spike. For distinct i, j ∈ {1, 2, . . . , n}, the set {ai, bi, aj, bj} is a
circuit of M . Any other non-spanning circuit of a spike is a transversal
of the legs.

Representable spike can be obtained as follows. Let F be a finite
field of order q ≥ 3 and let J = {j0, j1, . . . , jn} be a spanning circuit of
PG(n − 1, q). Now, for each i ∈ {1, 2, . . . , n}, let ai and bi be distinct
points of PG(n− 1, q)\{j0} that are on the line spanned by j0 and ji.
Now letM be the restriction of PG(n−1, q) to {a1, b1, a2, b2, . . . , an, bn}.
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The next theorem, which is stronger than we need, shows that it really
does require a lot of work to pin down a GF(q)-representable spike.

Theorem 2.1. Let q be a prime power and let M be a spike with rank
n > q3. To prove that M is GF(q)-representable requires at least 2

n
2

rank values.

Let M be a spike with legs l1 = {a1, b1}, . . . , ln = {an, bn}. Let
T (M) denote the set of all dependent transversals of (l1, l2, . . . , ln).
The following claim is straightforward.

Lemma 2.2. If T1, T2 ∈ T (M), then |T1 − T2| 6= 1.

Proof. If the result fails, then, by symmetry, we may assume that T1 =
{a1, . . . , an} and that T2 = {a1, . . . , an−1, bn}. Thus, rM(T1 ∪ T2) =
n − 1. Then, considering the 4-element circuits li ∪ ln, we see that
r(M) = n− 1 contradicting the fact that r(M) = n. �

The following result is also straightforward; we leave the proof to the
reader.

Lemma 2.3. Let T be a set of transversals of (l1, l2, . . . , ln) such that
|T1 − T2| 6= 1 for any T1, T2 ∈ T . Then there exists a unique spike M
on legs l1, l2, . . . , ln such that T (M) = T .

The complexity results in this section rely on the following lemma.

Lemma 2.4. Let M1 and M2 be GF(q)-representable spikes with legs
l1, . . . , ln such that T (M2) = T (M1) ∪ {T} for some transversal T 6∈
T (M1) of (l1, . . . , ln). Then n ≤ (q − 1)3 + 1.

Proof. We may assume that T = {a1, a2 . . . , an−1, bn}. By Lemma 2.2,
the transversal {a1, a2, . . . , an} is independent in M2 and, hence, also
in M1. Consider representations of M1 and M2; we have:

A1 =


a1 a2 · · · an b1 b2 · · · bn
1 0 · · · 0 1 + α−11 1 · · · 1
0 1 0 1 1 + α−12 1
...

. . .
...

. . .
0 0 1 1 1 1 + α−1n

 and

A2 =


a1 a2 · · · an b1 b2 · · · bn
1 0 · · · 0 1 + β−11 1 · · · 1
0 1 0 1 1 + β−12 1
...

. . .
...

. . .
0 0 1 1 1 1 + β−1n ,
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where αi 6= 0 and βi 6= 0 for each i ∈ {1, 2, . . . , n}. For S ⊆
{1, 2, . . . , n} we let TS denote the transversal {ai : i 6∈ S} ∪ {bi :
i ∈ S}. It is easily verified that TS is dependent in M1 if and only
if

∑
(αi : i ∈ S) = −1 and that TS is dependent in M2 if and

only if
∑

(βi : i ∈ S) = −1. Suppose, by way of contradiction,
that n > (q − 1)3 + 1. Note that there are at most (q − 1)2 dis-
tinct pairs (αi, βi). Therefore, there exist S ⊆ {1, 2, . . . , n − 1}, and
α, β ∈ GF (q) − {0} such that |S| = q and (αi, βi) = (α, β) for each
i ∈ S. Now,

∑
(αi : i ∈ S ∪ {n}) = qα + αn = αn 6= −1 and∑

(βi : i ∈ S ∪ n) = qβ + βn = βn = −1. So TS∪{n} is dependent in
M2 but not in M1, which is a contradiction. �

Recall that if C is a circuit-hyperplane of a matroid M , then the
collection of bases of M together with C is the collection of bases of a
matroid M ′, see, for example [9, Proposition 1.5.14]. We say that M ′

is obtained by relaxing C.

Proof of Theorem 2.1. Suppose that M has legs (li : i = 1, . . . , n). Let
T be a transversal of (l1, l2, . . . , ln). If T ∈ T (M), then, by Lemma 2.2
and Lemma 2.4, relaxing T results in a non-GF(q)-representable spike.
Similarly, if |T − T1| > 1 for all T1 ∈ T (M), then restricting T to a
circuit results in a non-GF(q)-representable spike. Let T ′ denote the
set of all transversals T of (l1, l2, . . . , ln) such that |T − T1| > 1 for all
T1 ∈ T (M). Thus, there are |T (M)| + |T ′| non-GF(q)-representable
spikes that differ in rank from M only on one set. Moreover, we have
(n + 1)(|T (M)| + |T ′|) ≥ (n + 1)|T (M)| + |T ′| ≥ 2n. Thus |T (M)| +
|T ′| ≥ 2n/(n+1) ≥ 2

n
2 . Therefore, to distinguish M from each of these

non-GF(q)-representable matroids, we need at least 2
n
2 rank values. �

3. A short proof of non-representability for prime fields

Our short proof of non-representability has three ingredients The
first ingredient provides a certificate for a short proof. As noted in
the introduction, it is somewhat more general than is required for this
paper. We delay its proof until Section 4.

Theorem 3.1. Let q be a prime power and let C be a class of matroids
such that the following hold.

(i) For all nonempty matroids M in C, there exists e ∈ E(M) such
that either M\e or M/e is in C.

(ii) There exists an integer t such that, if M ∈ C and e ∈ E(M),
then the following hold.
(a) If M/e /∈ C, then there is a t-separation (A,B) in M such

that e ∈ clM(A− {e}) ∩ clM(B − {e}).
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(b) If M\e /∈ C, then there is a t-separation (A,B) in M such
that e ∈ cl∗M(A− {e}) ∩ cl∗M(B − {e}).

(iii) There exists an integer s such that each matroid M ∈ C has at
most s inequivalent representations over GF(q).

(iv) Each excluded minor for the class of GF(q)-representable ma-
troids belongs to C.

Then proving that an n-element matroid is not representable over
GF(q) requires at most O(n2) rank evaluations.

We now consider the second ingredient. Let k ≥ 5 be an integer.
Then the definition of what it means for a matroid to be k-coherent is
given in [6]. In fact k-coherence is a connectivity condition interme-
diate between 3-connectivity and 4-connectivity; k-coherent matroids
are allowed to have 3-separations but only in a controlled way. The
full definition takes some preparation and we will not give it here. As
a slight weakening of k-coherence we say that a matroid is near k-
coherent if it is connected and either si(M) or co(M) is k-coherent.
The next theorem is [6, Corollary 12.6].

Theorem 3.2. Let p be a prime number and k ≥ 5 be an integer. Then
the following hold.

(i) If M is a nonempty near k-coherent matroid, then there is an
element e ∈ E(M) such that either M\e or M/e is near k-
coherent.

(ii) Let M be a near k-coherent and e ∈ E(M). Then the following
hold.
(a) If M/e is not near k-coherent, then there is a 4-separation

(A,B) in M such that e ∈ clM(A− {e}) ∩ clM(B − {e}).
(b) If M\e is not near k-coherent, then there is a 4-separation

(A,B) in M such that e ∈ cl∗M(A− {e}) ∩ cl∗M(B − {e}).
(iii) There is an integer µp such that a near k-coherent matroid has

at most µp inequivalent representations over GF(p).

Our final ingredient is a special case of a theorem of Ben David and
Geelen [2]. A nested sequence of 3-separations of length m in a matroid
M is a sequence A1, A2, . . . , Am = E(M) of subsets of E(M) such that,
for all i ∈ {1, 2, . . . ,m− 1}, we have Ai is a proper subset of Ai+1 and
λ(Ai) ≤ 2.

Theorem 3.3. Let q be a prime power. Then there is an integer νq
such that an excluded minor for GF(q)-representability has no nested
sequence of 3-separations of length νq.

It is an immediate consequence of the definition of k-coherent that a
3-connected matroid with no nested sequence of 3-separations of length
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k is k-coherent. From this fact, Theorem 3.3, and the fact that k-
coherent matroids are near k-coherent we obtain the specialisation that
we need.

Corollary 3.4. Let p be a prime number. Then an excluded minor for
GF(p)-representability is near νp-coherent.

We now have all the ingredients for the proof of Theorem 1.1. Let p
be a prime number and let C be the class of near νp-coherent matroids.
Consider conditions (i)–(iv) of Theorem 3.1. Condition (i) holds by
Theorem 3.2(i). Condition (ii) holds with t = 4 by Theorem 3.2(ii).
Condition (iii) holds with s = µp by Theorem 3.2(iii). Finally condition
(iv) holds by Corollary 3.4. Theorem 1.1 now follows from Theorem 3.1.

4. Proof of Theorem 3.1

We begin by reviewing basic material on freedom in matroids. The
treatment of freedom given here follows [5].

Let M be a matroid. Elements e and f of M are clones if swapping
the labels of e and f is an automorphism of M . A clonal class of M
is a maximal set of elements of M every pair of which are clones. An
element z of M is fixed in M if there is no extension of M by an element
z′ in which z and z′ are independent clones. Dually, an element z′ of
M is cofixed in M if it is fixed in M∗. Note that if z already has a
clone, say x, and {x, z} is independent, then z is not fixed as we can
add a new element freely on the line through x and z.

A flat F of M is cyclic if it is a union of circuits of M . The next
result is straightforward.

Proposition 4.1. Elements e and f of a matroid M are clones if and
only if they are contained in the same set of cyclic flats.

Let e and f be elements of M . Then e is freer than f if every cyclic
flat containing e also contains f . Thus e and f are clones if and only
if e is freer than f and f is freer than e. The freedom of an element e
of M is the maximum size of an independent clonal class containing e
among all extensions of M . This maximum does not exist if and only
if e is a coloop of M ; in this case the freedom of e is infinity. Observe
that an element is fixed in M if and only if its freedom is 0 or 1.

The notion of freedom of an element in a matroid was introduced
by Duke [3]. While his definition is different from that given here,
it is, in fact, equivalent; see [5, Lemma 2.8]. The next lemma is [3,
Theorem 6.2]. A proof is also given in [5, Lemma 2.9].
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Lemma 4.2. Let a and b be elements of the matroids M such that
a is freer than b. Then the freedom of a is at least the freedom of b.
Moreover, either a and b are clones or the freedom of a is greater than
the freedom of b.

For elements e and f of a matroid M , it is easily seen that the
freedom of f does not decrease when we delete e. Contraction has a
slightly more complicated effect on freedom. The proof of part (ii) of
the next lemma is given in [5, Lemma 2.10].

Lemma 4.3. Let e and f be elements of the matroid M where f has
freedom k in M .

(i) The freedom of f in M\e is at least k.
(ii) The freedom of f in M/e is at least k − 1. Moreover, if f has

freedom k − 1 in M/e, then f is freer than e in M .

The cofreedom of an element e of M is the freedom of e in M∗. It is
easily seen that the cyclic flats of M∗ are the complements of the cyclic
flats of M . It follows from this fact that e is freer than f in M∗ if and
only if f is freer than e in M . Note that an element is cofixed in M if
and only if its cofreedom is either 0 or 1. The next lemma is the dual
of Lemma 4.3.

Lemma 4.4. Let e and f be elements of the matroid M where f has
cofreedom k in M .

(i) The cofreedom of f in M/e is at least k.
(ii) The cofreedom of f in M\e is at least k−1. Moreover, if f has

cofreedom k − 1 in M\e, then e is freer than f in M .

We omit the easy proof of the next observation.

Lemma 4.5. The ground set of a matroid M consists of a single clonal
class if and only if M is uniform. Moreover, if M is uniform and
r(M), r∗(M) > 0, then each element of M has freedom r(M) and
cofreedom r(M∗).

Elements a and b of a matroid M are incomparable if a is not freer
than b and b is not freer than a. Note that an element a has freedom
0 if and only if it is a loop of M and has cofreedom 0 if and only if it
is a coloop of M .

Lemma 4.6. Let a be an element of the matroid M that is neither a
loop nor a coloop. If the freedom of a is γ and the cofreedom of a is δ,
then M has a Uγ,γ+δ-minor.
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Proof. Note that γ, δ > 0. Assume that M is not uniform. By
Lemma 4.5, M has an element b such that a and b are not clones.
Then either (i) a and b are incomparable, (ii) a is strictly freer than b,
or (iii) b is strictly freer than a.

Assume that either (i) or (ii) holds and consider the matroid M\b.
Then, by Lemma 4.3(i), a has freedom at least γ in M\b and by
Lemma 4.4(ii), a has cofreedom at least δ in M\b. As γ, δ > 0, we
see that a is neither a loop nor a coloop of M\b. On the other hand,
if (iii) holds, then we apply Lemma 4.3(ii) and Lemma 4.4(i) to obtain
the same conclusion for M/b.

Iterating the above procedure we eventually arrive at a minor N of
M using a whose ground set consists of a single clonal class, where the
freedom of a in N is γ′ ≥ γ and the cofreedom is δ′ ≥ δ. By Lemma 4.5
N is uniform, indeed N ∼= Uγ′,δ′+γ′ . The lemma now follows from the
fact that Uγ′,δ′+γ′ has a Uγ,γ+δ-minor. �

Corollary 4.7. Let q be a prime power and let M be a matroid
that is either GF(q)-representable or is an excluded minor for GF(q)-
representability.

(i) If e is not fixed in M , then e has cofreedom at most q.
(ii) If e is not cofixed in M , then e has freedom at most q.

Proof. Assume that e is not fixed in M . If e is a coloop, then e has
cofreedom 0, so that (i) holds. Assume that e is not a coloop of M .
Then e has freedom k ≥ 2. Assume that e has cofreedom q′ > q.
By Lemma 4.6, M has a Uk,q′+k-minor and hence a U2,q+3-minor. But
this matroid is neither GF(q)-representable nor an excluded minor for
GF(q) contradicting the choice of M . Thus (i) holds in this case too.
Part (ii) is the dual of (i). �

Recall that the connectivity function λM of a matroid M on E is
defined, for all subsets X of E by λM(X) = r(X) + r(E −X)− r(M).
We say that a partition (X,E−X) of E is a k-separation if λM(X) < k.
If λM(X) = k − 1, then the k-separation is exact. Recall also that the
coclosure operator of M , denoted cl∗ is the closure operator of M∗.
Thus x ∈ cl∗(A) if and only if x ∈ clM∗(A).

Lemma 4.8. Let e be an element of the matroid M and (A,B) be a
(t+ 1)-separation.

(i) If e ∈ cl(A − {e}) ∩ cl(B − {e}), then e has freedom at most t
in M .

(ii) If e ∈ cl∗(A−{e})∩ cl∗(B−{e}), then e has cofreedom at most
t in M .
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Proof. Consider (i). Let M ′ be an extension of M by a set Z such
that the members of Z ∪ {e} are clones. Then Z ∪ {e} is contained in
clM ′(A) ∩ clM ′(B). It now follows from the submodularity of the rank
function that rM ′(Z ∪ {e}) ≤ t so that e has freedom at most t in M .
Part (ii) is the dual of (i). �

The next lemma is [5, Theorem 4.1]. As the result is vital we repeat
the short proof here. It shows that, if an element e has bounded free-
dom, then the candidates for a possible extension of a representation of
M\e to a representation of M all belong to a bounded rank subspace
of the projective geometry. If none of these candidates succeed, then
either M is not representable, or a representation of M can only be
obtained by extending some other representation of M\e.

Lemma 4.9. Let e be an element of a rank-r matroid M . Let R be a
GF(q)-representation of M\e considered as a restriction of PG(r−1, q).
Let K be a flat of PG(r−1, q) such that, for each flat F of M in which
e is not a coloop, e ∈ F if and only if the flat of PG(r − 1, q) that is
spanned by F − {e} contains K. Then the rank of K is at most the
freedom of e in M .

Proof. Let F be an infinite extension field of GF(q) and let P be the
projective space of rank r over F. Thus P contains PG(r − 1, q). Let
K ′ be the flat of P that is spanned by K. Then, for each flat F of M
in which e is not a coloop, e is in F if and only if the flat of P that is
spanned by F − {e} contains K ′. Let K∗ denote the set of points x of
K ′ for which R∪{x} is an F-representation of M . Note that an element
x of K ′ is in K∗ if and only if, for each flat F of M not containing e,
the point x is not contained in the flat of P spanned by F . There is
a finite number of flats of M that do not contain e. Therefore, by a
simple comparison of measures, K∗ spans K ′. It is now straightforward
to deduce that K∗ is spanned by some independent set S such that S
is a clonal class of the matroid M ′ that is represented by R ∪ S. Note
that M ′ is an extension of M so that |S| is at most the freedom of e in
M . �

Proof of Theorem 3.1. Let M be a matroid that is not representable
over GF(q). In what follows, suppose that we have a Claimant
whose brief is to succinctly prove to an Adjudicator that M is not
GF(q)-representable. The Claimant knows everything about M but
can only reveal quadratically many rank-values to the Adjudicator.
The Claimant can find a minimal minor M ′ = M\D/C of M that
is not GF(q)-representable. Now, for any X ⊆ E(M ′), we have
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rM ′(X) = rM(X ∪ C) − rM(C); thus one rank evaluation for M ′ re-
quires only two rank evaluations for M (and if we need to make multiple
rank evaluations for M ′, we only need to compute rM(C) once). The
Adjudicator concedes that it suffices to show that M ′ is not GF(q)-
representable. Thus we lose no generality in assuming that M is an
excluded minor for GF(q)-representability.

Let l = max{t, q}.

4.9.1. If N is a nonempty member of C and N is either an excluded
minor for GF(q)-representability or is GF(q)-representable, then there
is an element e of N such that either:

(a) N\e ∈ C and e has freedom at most l, or
(b) N/e ∈ C and e has cofreedom at most l.

Proof. By property (i) of C, there is an element e ∈ E(N) such that
either N\e or N/e is in C. Up to duality we may assume that N\e is in
C. If the freedom of e in N is at most l, then the claim holds. Assume
otherwise. By Corollary 4.7, e is cofixed in N . Assume that N/e /∈ C.
Then, by property (ii) of C, there is a t-separation (A,B) in N such
that e ∈ cl(A−{e})∩cl(B−{e}). Then, by Lemma 4.8, e has freedom
at most t ≤ l. This contradiction shows that N/e ∈ C. As e is cofixed
it has cofreedom 1 < l. Thus (b) is satisfied by e. �

By property (iv) of C our excluded minor M belongs to C.
Say |E(M)| = k. By 4.9.1 the Claimant can find a sequence
M0,M1, . . . ,Mk = M of matroids in C such that M0 is empty, and
for each i ∈ {1, 2, . . . , k} there is an element ei ∈Mi such that either

Mi−1 = Mi\ei and ei has freedom at most l in Mi, or
Mi−1 = Mi/ei and ei has cofreedom at most l in Mi.

For each i ∈ {1, 2, . . . , k}, let Ri be a complete set of inequivalent
GF(q)-representations of Mi; that is, any GF(q)-representation of Mi

is equivalent to some representation in Ri, but no two representations
in Ri are equivalent. By property (iii) of C, we have |Ri| ≤ s for all
i ∈ {1, 2, . . . , k}. Moreover, since M is not GF(q)-representable, Rk

is empty. The Claimant, who knows everything about M , can deter-
mine (R1,R2, . . . ,Rk). The Claimants proof will consist of the sets
(R1,R2, . . . ,Rk) along with a recursive argument that each represen-
tation of Mi is equivalent to one in Ri. Note that we do not have to
prove that members of Ri are, in fact, representations of Mi, only that
these are the only possible candidates for representations of Mi.

Suppose that the Adjudicator is already satisfied that each GF(q)-
representation of Mi−1 is equivalent to some representation inRi−1. By
duality we may assume that Mi−1 = Mi\ei. Consider a representation
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Ri of Mi. Evidently this representation is obtained by extending a rep-
resentation R of Mi−1. For each such representation we need to identify
all possible points P in PG(r−1, q) such that R∪{p} represents Mi for
p ∈ P . Suppose that S ⊆ E(Mi)−{ei} with ei ∈ clMi

(S). Then the set
P is in the subspace of PG(r − 1, q) spanned by S. The Claimant will
try to identify P by considering the intersection of all such flats. This is
done inductively. The Claimant constructs a sequence K0, K1, . . . , Km

of subspaces of PG(r−1, q) as follows. Let K0 = PG(r−1, q). For the
flat Kj one of the following holds.

1. There is a set Sj ⊆ E(Mi)− {e} and an element aj of Kj such
that ei is in the closure of Sj in Mi and aj is not spanned by Sj
in PG(r − 1, q). In this case, the Claimant defines Kj+1 to be
the intersection of Kj with the flat of PG(r − 1, q) spanned by
Sj.

2. For each flat F of Mi containing ei such that ei is not a coloop
of Mi|F , the flat Kj is contained in the flat of PG(r−1, q) that
is spanned by F − {e}. Then j = m.

Note that m ≤ r and Km contains the set P (which may be empty).
The Claimant reveals the sets (S0, S1, . . . , Sm−1) to the Adjudicator.
Then, by revealing O(r) rank values the Claimant convinces the Ad-
judicator that ei is in the closure of each of S0, S1, . . . , Sm−1. Given
S0, S1, . . . , Sm−1, the Adjudicator can then determine K0, K1, . . . , Km

efficiently using routine linear algebra. Now we are in one of the fol-
lowing cases.

Case 1. There is a set S ⊆ E(Mi) − {ei} such that ei is not in the
closure of S in Mi but Km is contained in the flat spanned by
S in PG(r − 1, q).

Case 2. For each flat F of Mi that does not contain ei, the flat Km is
not contained in the flat of PG(r − 1, q) that is spanned by F .

In Case 1 the Claimant can easily convince the Adjudicator R cannot
be extended to a representation of Mi. Indeed, two rank-values satisfy
the Adjudicator that e ∈ clMi

(S) and the Adjudicator can check that
Km is spanned by S. Now consider the second case. As ei has cofree-
dom at most l, it follows from Lemma 4.9 that Km has rank at most
l. If Km has rank 0, then the Adjudicator concedes that R cannot be
extended to a representation of Mk. Suppose that Km is nonempty.

Then Km has at most ql−1
q−1 elements. For an element of Km that does

not extend R to a representation of Mi, the Claimant can reveal a sin-
gle rank value to expose the fault, that is, the elements of Km that are
not in P can be identified with O(1) rank evaluations.
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As Ri−1 has at most s members, we need only O(r) rank evaluations
to determine Ri from Ri−1. Therefore O(|E(M)|2) rank evaluations
suffice to prove that M is not GF(q)-representable.

�
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