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Abstract. We consider various applications of our characterization of
the internally 4-connected binary matroids with no M(K3,3)-minor. In
particular, we characterize the internally 4-connected members of those
classes of binary matroids produced by excluding any collection of cy-
cle and bond matroids of K3,3 and K5, as long as that collection con-
tains either M(K3,3) or M∗(K3,3). We also present polynomial-time
algorithms for deciding membership of these classes, where the input
consists of a matrix with entries from GF(2). In addition we character-
ize the maximum-sized simple binary matroids with no M(K3,3)-minor,
for any particular rank, and we show that a binary matroid with no
M(K3,3)-minor has a critical exponent over GF(2) of at most four.

1. Introduction

In a previous article we proved the following theorem.

Theorem 1.1. [12, Theorem 1.1] An internally 4-connected binary matroid
M has no minor isomorphic to M(K3,3) if and only if M is either:

(i) cographic;
(ii) isomorphic to a triangular or triadic Möbius matroid; or,
(iii) isomorphic to one of 18 sporadic matroids.

The Möbius matroids are single-element extensions of bond matroids of
Möbius ladders. We will describe them in Section 2.5. The 18 sporadic ma-
troids appearing in Theorem 1.1 have ground sets of cardinality at most 21,
and have rank at most 11. Matrix representations of the sporadic matroids
appear in Appendix B of [12], and are also available from the website of the
second author (http://www.maths.uwa.edu.au/∼gordon).

This sequel explores various applications of Theorem 1.1. In Sections 1.1
to 1.4 we introduce these applications and state our main results. In Sec-
tion 1.5 we collect some conjectures motivated by the results in this paper.
Before proceeding, we note that the proof of Theorem 1.1 involves a consid-
erable amount of computer checking. In this paper we also use a computer
to check a handful of statements. For this purpose we use Macek, the
software package developed by Petr Hliněný. Macek is freely available
to download, along with supporting documentation, at the current website
http://www.fi.muni.cz/∼hlineny/MACEK.
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1.1. Other classes. In Section 3 we characterize the internally 4-con-
nected binary matroids with no minors in M, where M is some sub-
set of {M(K3,3), M(K5), M∗(K3,3), M∗(K5)} such that M contains either
M(K3,3) or M∗(K3,3). Thus we characterize the internally 4-connected
members in twelve different families of binary matroids. Only the small-
est of these classes has been characterized before [16].

1.2. Polynomial-time algorithms. In Section 4 we consider algorithmic
consequences of Theorem 1.1. We present a polynomial-time algorithm for
deciding if a binary matroid (represented by a matrix over GF(2)) has a mi-
nor in M, where M is a subset of {M(K3,3), M(K5), M∗(K3,3), M∗(K5)},
and M contains either M(K3,3) or M∗(K3,3). We also consider oracle algo-
rithms.

Algorithms for binary matroids. Seymour’s [18] famous decomposition the-
orem for regular matroids leads to a polynomial-time algorithm for deciding
whether a matrix over GF(2) represents a regular matroid. In Section 4
we develop analogous algorithms for recognizing the twelve classes of bi-
nary matroids described in Section 3. The main theorem of Section 4 is the
following result.

Theorem 1.2. Suppose that M is a subset of {M(K3,3), M(K5),
M∗(K3,3), M∗(K5)} such that M contains either M(K3,3) or M∗(K3,3).
There is a polynomial-time algorithm for solving the following problem:
Given a matrix A over GF(2), decide whether M [A] has a minor in M.

The algorithms of Theorem 1.2 are necessarily more complicated than the
algorithm for recognizing regular matroids, for the class of regular matroids
is closed under 3-sums, while the classes in Theorem 1.2 are not. Much of
Section 4.1 is spent developing more sophisticated ways of decomposing a
binary matroid into its internally 4-connected components.

Oracle algorithms. Suppose that M is a matroid on the ground set E. When
queried about a subset X ⊆ E a matroid oracle returns in unit time some
information about X. That information is typically the rank of X, or an an-
swer to the question ‘Is X independent?’. An oracle algorithm is efficient if
the number of calls it makes to the oracle is bounded by some fixed polyno-
mial function of |E(M)|, for any matroid M , and all additional computation
can also be done in polynomial time.

Using Seymour’s decomposition theorem, and techniques invented by
Truemper [20], it is possible to construct an efficient oracle algorithm for
deciding whether a matroid is regular (see [1, Section 7.4] and [21]). In
contrast to this, the algorithms of Theorem 1.2 do not extend to efficient
oracle algorithms, as we now discuss. An example of Seymour’s [19] shows
that there is no efficient oracle algorithm for deciding whether a matroid
is binary. This same example shows that if M is any collection of bond
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and cycle matroids of Kuratowski graphs, then there can be no efficient or-
acle algorithm that decides if a matroid is binary with no minor in M (see
Proposition 4.20). Thus we can expect no oracle analogue of Theorem 1.2.

On the other hand, the characterizations of Section 3 feature basic classes
that are recognizable by efficient oracle algorithms. This reveals the curious
fact that it is possible to have an efficient algorithm for deciding member-
ship in a class of matroids when the input is guaranteed to be internally
4-connected, even if there is no efficient algorithm for deciding membership
in the general case (see Propositions 4.20 and 4.21). We summarize this
phenomenon in the following corollary.

Corollary 1.3. Let M be a subset of {M(K3,3), M(K5), M∗(K3,3),
M∗(K5)} such that M contains either M(K3,3) or M∗(K3,3). There is
no efficient oracle algorithm for deciding whether a matroid belongs to the
class of binary matroids with no minor in M. However, there is an efficient
oracle algorithm for deciding whether an internally 4-connected matroid is
a binary matroid with no minor in M.

Oracle algorithms are discussed more fully in Section 4.2.

1.3. Maximum-sized binary matroids with no M(K3,3). In Section 5
we use Theorem 1.1 to determine the maximum size of a simple rank-r binary
matroid with no M(K3,3)-minor. Moreover, we characterize the matroids
that obtain this upper bound. This completely resolves a question studied
by Kung [10]. He showed that a simple rank-r binary matroid M without an
M(K3,3)-minor has at most 10r elements. Theorem 5.3 shows that, in fact,
|E(M)| ≤ 14r/3− α(r), where α(r) assumes one of three values depending
on the residue of r modulo 3. Moreover this bound is sharp. Any ma-
troid meeting this bound can be obtained by starting with either PG(1, 2),
PG(2, 2), or PG(3, 2), and then repeatedly adding copies of PG(3, 2) via
parallel connections.

1.4. Critical exponents. If M is a matroid then its characteristic poly-
nomial, χ(M ; t) is a polynomial in the variable t. If M is loopless and
representable over GF(q), then the “critical exponent” of M over q, denoted
c(M ; q), is the smallest positive integer k such that χ(M ; qk) 6= 0. In Sec-
tion 6 we show that any loopless binary matroid with no M(K3,3)-minor
has a critical exponent over GF(2) of at most four. Moreover, we charac-
terize such matroids that have critical exponent equal to four: They are
precisely those with a 3-connected component isomorphic to PG(3, 2) (see
Theorem 6.2). This resolves a programme initiated by Kung [10], who
showed that if M is a simple binary matroid with no M(K3,3)-minor, then
c(M ; 2) ≤ 10.

1.5. Conjectures on recognition problems. In this section we speculate
on the extent to which the algorithmic results of Section 4 are special cases
of more general theorems. While this paper focuses on binary matroids, the
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conjectures are also interesting for other fields and we state some of them at
that level of generality. The first two conjectures are originally due to Neil
Robertson and Paul Seymour, although apparently they never stated them
in print. They are discussed in [5] in the context of extending the Graph
Minors project of Robertson and Seymour to matroids representable over
finite fields.

Conjecture 1.4 (Well-Quasi-Ordering Conjecture). Let GF(q) be a finite
field. Then any infinite set of GF(q)-representable matroids contains two
matroids, one of which is isomorphic to a minor of the other.

A positive answer to Conjecture 1.4 would imply that any minor-closed
class of GF(q)-representable matroids has a finite number of GF(q)-repre-
sentable excluded minors.

Conjecture 1.5. For any finite field GF(q) and any GF(q)-representable
matroid N , there is a polynomial-time algorithm for solving the following
problem: Given a matrix A over GF(q), decide whether M [A] has a minor
isomorphic to N .

We note that a positive answer to Conjecture 1.5 implies the famous result
by Robertson and Seymour [17] that there is polynomial-time algorithm for
detecting the presence of a fixed minor in a graph.

If Conjectures 1.4 and 1.5 were true, then the next conjecture would also
hold.

Conjecture 1.6. For any finite field GF(q), and any minor-closed class M
of GF(q)-representable matroids, there is a polynomial-time algorithm for
solving the following problem: Given a matrix A over GF(q), decide whether
M [A] belongs to M.

The results of Section 4 show that Conjecture 1.6 holds for the classes of
binary matroids described in Section 3.

Just as intriguing is the possibility of extending the oracle-complexity re-
sults mentioned in Corollary 1.3. In what follows we restrict our attention
to binary matroids. Seymour’s [19] example shows that there is no efficient
oracle algorithm for deciding whether a matroid is binary. Because of this
example, one might expect that finding efficient oracle algorithms for recog-
nizing classes of binary matroids is a hopeless task. But Corollary 1.3 makes
it plausible that the difficulties may simply be due to degeneracies caused
by low connectivity.

Conjecture 1.7. There is an efficient oracle algorithm for deciding if an
internally 4-connected matroid is binary.

This is an ambitious conjecture. The next conjecture is somewhat more
modest.

Conjecture 1.8. Let M be a proper minor-closed class of binary matroids.
There is an efficient oracle algorithm for deciding whether an internally
4-connected matroid belongs to M.
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The matroids used by Seymour to construct his example are examples of
“spikes”. Spikes are a notorious source of difficulty in matroid theory. More
generally, a spike-like flower of order n in a 3-connected matroid M is a
partition (P1, . . . , Pn) of the ground set of M such that, for every proper
subset J of {1, . . . , n} the partition

(
⋃
j∈J

Pj , E(M)−
⋃
j∈J

Pj)

is an exact 3-separation of M ; and, for all distinct i and j in {1, . . . , n} we
have r(Pi∪Pj) = r(Pi)+r(Pj)−1. A rank-n spike contains a spike-like flower
of order n. We believe the existence of large spike-like flowers is at the heart
of the difficulty of recognising binary matroids. This belief is encapsulated
by the next conjecture, which is a strengthening of Conjecture 1.7.

Conjecture 1.9. Let k be a fixed positive integer. There is an efficient
oracle algorithm for deciding if a 3-connected matroid with no spike-like
flower of order k is a binary matroid.

Indeed the hypothesis of 3-connectivity in Conjecture 1.9 could be re-
moved modulo the annoying technicalities of stating what it means for a
more general matroid to have a spike-like flower. In fact, it is probably not
difficult to prove that Conjecture 1.9 follows from Conjecture 1.7. Simi-
lar comments could be made about an analogous generalization of Conjec-
ture 1.8.

2. Preliminaries

Our reference for fundamental notions of matroid theory is Oxley [15], and
our notation follows that source, except that we denote the simple matroid
associated with the matroid M by si(M). We assume that the ground set
of si(M) is the set of parallel classes of M . If M is a collection of binary
matroids, then EX (M) is the family of binary matroids with no minors in
M.

2.1. Connectivity. Let M be a matroid on the ground set E. The con-
nectivity function of M , denoted by λM , takes any subset X ⊆ E to
rM (X)+rM (E−X)−r(M). We use λ∗M to denote the connectivity function
of M∗. A partition (X1, X2) of E is a k-separation of M if |X1|, |X2| ≥ k and
λM (X1) = λM (X2) < k. A k-separation (X1, X2) is exact if λM (X1) = k−1.
We say that M is n-connected if it has no k-separations such that k < n.
In addition M is internally 4-connected if it is 3-connected and whenever
(X1, X2) is a 3-separation, then min{|X1|, |X2|} = 3.

The next result follows directly from a theorem of Oxley [14, Theorem 3.6].

Lemma 2.1. Let T be a triangle of a 3-connected binary matroid M . If the
rank and corank of M are at least three then M has an M(K4)-minor in
which T is a triangle.
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2.2. Symmetric difference of matroids. Suppose that M is a binary
matroid. A cycle of M is a subset Z of E(M) such that Z can be expressed as
a (possibly empty) disjoint union of circuits of M . The symmetric difference
of sets Z1 and Z2 is denoted by Z14Z2. Binary matroids are characterized
by the fact that the symmetric difference of any two cycles is another cycle.

Let M1 and M2 be two binary matroids on the ground sets E1 and E2

respectively. Let Z be the collection

{Z14Z2 ⊆ E14E2 | Zi is a cycle of Mi, i = 1, 2}.

Then Z is the collection of cycles of a binary matroid on the ground set
E14E2. We denote this matroid M14M2.

Proposition 2.2. [18, (4.4)] Suppose that M1 and M2 are binary matroids
on the sets E1 and E2 respectively. If A and B are disjoint subsets of E1−E2

then
(M14M2)/A\B = (M1/A\B)4M2.

The next two results are straightforward to prove.

Proposition 2.3. Suppose that M1 and M2 are binary matroids on the
ground sets E1 and E2 respectively. Let T = E1 ∩ E2, and assume that
M1|T = M2|T . Then

(M14M2)|(E1 − T ) = M1|(E1 − T ).

Proposition 2.4. Suppose that M1, M2, and M3 are binary matroids on
the ground sets E1, E2, and E3 respectively. Then

(M14M2)4M3 = M14(M24M3).

Proposition 2.5. Suppose that M1 and M2 are binary matroids on the
ground sets E1 and E2 respectively. Assume E1 ⊆ E2. If r(M1) = 0 then
M14M2 = M2/E1.

Proof. Suppose that C is a circuit of M2/E1. Then C∪E1 contains a circuit
C ′ of M2 such that C = C ′ − E1. Now C ′ ∩ E1 is a cycle of M1 since it is
a union of loops, so C ′ − E1 = C is a cycle of M14M2, and hence contains
a circuit of M14M2. On the other hand, suppose that C is a circuit of
M14M2. Then C = Z14Z2, where Z1 is a cycle of M1 and Z2 is a cycle of
M2. There must be some circuit C ′ ⊆ Z2 of M2 such that C ′∩(E2−E1) 6= ∅.
Then C ′ contains a circuit of M2/E1. Thus every circuit of M14M2 contains
a circuit of M2/E1 and we are done. �

2.3. The ∆-Y operation. Suppose that M is a binary matroid and assume
that T = {a1, a2, a3} is a triangle of M . Let N be an isomorphic copy of
M(K4) such that E(N) ∩ E(M) = T , where T is a triangle of N . Assume
that E(N) = T ∪ {a′1, a′2, a′3}, where ({a′1, a′2, a′3} − a′i) ∪ ai is a triangle
of N for i = 1, 2, 3. We say that N4M is produced from M by a ∆−Y
operation on T , and we use ∆T (M) to denote the resulting matroid. To
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ensure that M and ∆T (M) have the same ground set we relabel a′i with ai

in ∆T (M), for i = 1, 2, 3.
Oxley, Semple, and Vertigan [13] generalize the ∆-Y operation using Bry-

lawski’s parallel connection [2]. It is easy to see that if T is coindependent
in M , then the two definitions coincide. Many of the following results are
identical to those in [13]. Because our definition of the ∆-Y operation is
slightly different we provide some independent proofs.

Proposition 2.6. Suppose that T is a coindependent triangle of the binary
matroid M . Then T is a triad of ∆T (M).

Proof. Suppose ∆T (M) = N4M . Recall that the elements of E(N) − T
are relabeled in ∆T (M), so that ∆T (M) and M have the same ground set.
Now E(N)− T is a cocircuit of N , and hence a cocircuit of N/T . Because
T is coindependent in M it follows that T is a set of loops in M/E(M)−T .
Propositions 2.2 and 2.5 imply that

N/T = N4(M/E(M)− T ) = (N4M)/E(M)− T.

Therefore T is a cocircuit of N4M = ∆T (M). �

The next results follow easily from Propositions 2.3 and 2.4.

Proposition 2.7. Suppose that T is a triangle of the binary matroid M .
Then ∆T (M)\T = M\T .

Proposition 2.8. Suppose that M is a binary matroid and that T1 and T2

are disjoint triangles of M . Then

∆T1(∆T2(M)) = ∆T2(∆T1(M)).

Proposition 2.9. Suppose that T is a triangle of the binary matroid M and
that a ∈ T . Then ∆T (M)/a = M\a.

Proof. Suppose that ∆T (M) = N4M . Let a′ be the element of E(N)− T
that is relabeled with a. Proposition 2.2 says that (N4M)/a′ = (N/a′)4M .
Note that N/a′ consists of the triangle T with parallel elements added to
both members of T−a. Suppose that {b, b′} is a parallel pair of N/a′, where
b ∈ T . Let M+ be obtained from M by adding x in parallel to b. Then
{b, x} is a cycle of M+, so {b′, x} is a cycle of (N/a′)4M+. Hence either
{b′, x} is a parallel pair, or both b′ and x are loops in (N/a′)4M+. In either
case Proposition 2.2 implies that

(N/a′)4M = (N/a′)4(M+\x) = ((N/a′)4M+)\x ∼=
((N/a′)4M+)\b′ = (N/a′\b′)4M+.

By using the same argument again we can show that (N/a′)4M is isomor-
phic to the symmetric difference of N |T and the matroid obtained from M
by adding parallel elements to the members of T −a. Now the result follows
easily from Proposition 2.3. �
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Proposition 2.10. Suppose that T is a triangle of the binary matroid M .
Then r(∆T (M)) = r(M) + 1.

Proof. Let a be an element of T . Since a is not a coloop in M , nor a loop
in ∆T (M) the result follows immediately from Proposition 2.9. �

2.4. Matroid sums. In this section we define matroid 1-, 2-, and 3-sums,
following the route taken by Seymour [18]. Suppose that M1 and M2 are
binary matroids on the ground sets E1 and E2 respectively. If E1 and E2

are disjoint, and neither E1 nor E2 is empty, then M14M2 is the 1-sum of
M1 and M2, denoted M1 ⊕ M2. If E1 and E2 meet in a single element p,
where p is a loop or coloop in neither M1 nor M2, and |E1|, |E2| ≥ 3, then
M14M2 is the 2-sum of M1 and M2, denoted M1 ⊕2 M2. We say that p is
the basepoint of the 2-sum. Finally, suppose that E1 ∩ E2 = T and assume
that the following conditions hold:

(i) T is a triangle in both M1 and M2;
(ii) T contains a cocircuit in neither M1 nor M2; and,
(iii) |E1|, |E2| ≥ 7.
In this case M14M2 is the 3-sum of M1 and M2, denoted M1 ⊕3 M2.

Next we list a number of results due to Seymour.

Proposition 2.11. [18, (2.6)] Suppose that (X1, X2) is an exact 2-separa-
tion of the binary matroid M . Then there are binary matroids M1 and M2 on
the ground sets X1∪p and X2∪p, where p /∈ X1∪X2, such that M = M1⊕2

M2. Conversely, if M = M1⊕2 M2 then (E(M1)−E(M2), E(M2)−E(M1))
is a 2-separation of M , and M1 and M2 are isomorphic to minors of M .

Proposition 2.12. [18, (2.9)] Suppose that (X1, X2) is an exact 3-separa-
tion of the binary matroid M such that min{|X1|, |X2|} ≥ 4. Then there
are binary matroids M1 and M2 on the ground sets X1 ∪ T and X2 ∪ T
respectively, where T is disjoint from X1 ∪ X2, such that M = M1 ⊕3 M2.
Conversely, if M = M1 ⊕3 M2, then (E(M1)−E(M2), E(M2)−E(M1)) is
an exact 3-separation of M .

Proposition 2.13. [18, (4.1)] Suppose that the binary matroid M can be
expressed as the 3-sum of M1 and M2. If M is 3-connected then M1 and
M2 are isomorphic to minors of M .

Proposition 2.14. [18, (4.3)] Suppose that M1 and M2 are binary matroids
on the ground sets E1 and E2 respectively. Suppose also that the 3-sum of
M1 and M2 is defined and that M1 ⊕3 M2 is 3-connected. If (X1, X2) is
a 2-separation of M1, then for some i ∈ {1, 2} we have that Xi = {x, z},
where x ∈ E1 − E2 and z ∈ E1 ∩ E2. Moreover x and z are parallel in M1.

Proposition 2.15. Suppose that M1 and M2 are binary matroids on the
ground sets E1 and E2 respectively, where E1 ∩ E2 = T . Suppose also that
the 3-sum of M1 and M2 is defined. Let M = M1⊕3M2. If M is 3-connected
then ∆T (M1) and ∆T (M2) are isomorphic to minors of M .
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Proof. Suppose that r(M1) < 3. Proposition 2.14 implies that M1 can have
no parallel class containing more than two elements. Thus |E1| ≤ 6, a
contradiction, as M1 ⊕3 M2 is defined. Therefore r(M1) ≥ 3.

Suppose that r(E1 − clM1(T )) < r(M1). Since r(M1) ≥ 3, it follows
that E1 − clM1(T ) is non-empty. If |E1 − clM1(T )| = 1 then M1 contains a
coloop, and it is easy to see that this implies that M1 ⊕3 M2 has a coloop,
a contradiction. Therefore |E1− clM1(T )| ≥ 2, and (clM1(T ), E1− clM1(T ))
is a 2-separation of M1. This contradicts Proposition 2.14.

Therefore there is a basis B of M1 that avoids clM1(T ). Proposition 2.14
implies si(M1) is 3-connected and that the only parallel pairs of M1 are
contained in clM1(T ). Recall that the ground set of si(M1) is the set of
parallel classes of M1. Thus clM1(T ) is a triangle of si(M1). Since B is a basis
of si(M1) and clM1(T ) avoids B it follows that the rank and corank of si(M1)
are both at least three. Now Lemma 2.1 implies that si(M1) has a minor
isomorphic to M(K4) in which clM1(T ) is a triangle. Let M ′ be a minor of
M1 such that M ′ ∼= M(K4) and T is a triangle of M ′. Proposition 2.2 says
that M ′4M2 is a minor of M . However M ′4M2 is isomorphic to ∆T (M2).
The same argument shows that ∆T (M1) is isomorphic to a minor of M . �

Proposition 2.16. Suppose that M1 and M2 are binary matroids on the
ground sets E1 and E2, where E1 ∩ E2 = T and M1 ⊕3 M2 is defined. Let
T0 be a triangle of M1 that is disjoint from T . Then ∆T0(M1 ⊕3 M2) =
∆T0(M1)⊕3 M2.

Proof. Note that T0 is a triangle of M1 ⊕3 M2 by Proposition 2.3. Thus
∆T0(M1 ⊕3 M2) is defined. Moreover T is a triangle of ∆T0(M1) for the
same reason. Let ∆T0(M1) = N4M1, where N ∼= M(K4). If T contains a
cocircuit in N4M1 then it contains a cocircuit in (N4M1)/(E(N)− T0) =
(N/(E(N)−T0))4M1, which is equal to M1/T0 by Proposition 2.5. Thus T
contains a cocircuit in M1, a contradiction as M1 ⊕3 M2 is defined. Finally
we observe that |E(∆T0(M1))| ≥ 7. Therefore ∆T0(M1) ⊕3 M2 is defined
and Proposition 2.4 says that it is equal to ∆T0(M1 ⊕3 M2). �

It is well known that if M0 is a 2- (respectively, 3-) connected matroid,
and neither M1 nor M2 has an M0-minor, then the 1- (respectively, 2-)
sum of M1 and M2 has no M0-minor. We would like an analogue of this
fact for 3-sums, but unfortunately the strict analogue is false: For example,
the binary matroid R12 used by Seymour in his decomposition theorem for
regular matroids can be expressed as the 3-sum of M(K5\e) and M∗(K3,3).
Neither of these matroids has an M(K3,3)-minor, but R12 does. However,
Lemma 2.19 contains a partial results in this direction. Before we can prove
the lemma, we need two preliminary propositions.

Proposition 2.17. Suppose that M1 and M2 are binary matroids on the
ground sets E1 and E2 respectively. Suppose that E1∩E2 = {e, f, g}, where
{e, f, g} is a triangle in M2, and e is a loop while {f, g} is a parallel pair
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in M1. Let B2 be a basis of M2 such that B2∩{e, f, g} = {e}. Then B2− e
is a basis of (M14M2)|(E2 − E1).

Proof. Let T = {e, f, g}. Suppose that B2 − e contains a circuit C of
M14M2. In this case C = Z14Z2, where Z1 ⊆ T is a cycle of M1 and
Z2 ⊆ B2 ∪ T is a cycle of M2. Suppose that Z2 is the disjoint union of the
circuits C1, . . . , Ct of M2. No circuit of M2 can be contained in B2, so t ≤ 2
as |T − B2| = 2. Suppose that t = 1. It cannot be the case that f, g ∈ C1,
for then the symmetric difference of C1 and T would be a circuit contained
in B2. Assume that f ∈ C1. Then Z2 ∩ T = Z1 contains f , but not g.
This is impossible as Z1 is a cycle, and f and g are parallel in M1. This
contradiction shows that t = 2. Since neither C1 nor C2 can contain {f, g}
we will assume that f ∈ C1 and g ∈ C2. As neither C1 nor C2 is contained
in T it follows that both meet B2 − e.

Suppose that e is in neither C1 nor C2. Then (C1 − f) ∪ {e, g} and C2

are distinct circuits contained in B2 ∪ g, a contradiction as B2 is a basis
of M2. Thus we will assume that e ∈ C1 (the argument when e ∈ C2 is
identical). This implies that (C1 − {e, f}) ∪ g is a circuit, so C2 must be
equal to (C1 − {e, f}) ∪ g. But this is a contradiction, as C1 and C2 are
disjoint.

We have shown that B2 − e is independent in M14M2. Let x be an
element in E2 − (B2 ∪ T ). Then B2 ∪ x contains a circuit C in M2. As B2

meets T in e, and e is a loop in M1 it is now easy to see that C−e is a cycle
in M14M2. Thus (B2 − e) ∪ x is dependent in M14M2. This implies that
B2 − e is a basis of E2 − T in M14M2, so we are done. �

Proposition 2.18. Suppose that M1 and M2 are binary matroids on the
ground sets E1 and E2 respectively. Suppose that E1∩E2 = {e, f, g}, where
{e, f, g} is a coindependent triangle in M2, and e is a loop while {f, g} is
a parallel pair in M1. Then the restriction of M14M2 to E2 − E1 is equal
to M2/e\f\g.

Proof. Let T = {e, f, g}. Let C be a circuit of M2/e\f\g. There is a circuit
C ′ ⊆ C ∪ e of M2 such that C ′ − e = C. As e is a loop of M1 it follows that
C ′ − e = C is a cycle of M14M2, and hence contains a circuit of M14M2.

On the other hand, suppose that I is an independent set of M2/e\f\g.
Then I ∪e is independent in M2, and as T is coindependent in M2 there is a
basis B2 of M2 such that I ∪ e ⊆ B2 and f, g /∈ B2. Proposition 2.17 shows
that B2 − e, and hence I, is independent in M14M2.

Suppose that X is some subset of E2 − T . The previous arguments show
that if X is dependent in M2/e\f\g then it is dependent in M14M2, and
if it is independent in M2/e\f\g, then it is independent in M14M2. This
completes the proof. �

Lemma 2.19. Let M0 be an internally 4-connected binary matroid such that
|E(M0)| ≥ 4. Suppose that M1 and M2 are binary matroids on the ground
sets E1 and E2 respectively and that neither M1 nor M2 has an M0-minor.
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Assume that E1∩E2 = T where T is a triangle of both M1 and M2 and that
the 3-sum of M1 and M2 is defined. If M1 ⊕3 M2 has an M0-minor then
either ∆T (M1) or ∆T (M2) has an M0-minor and M0 contains at least one
triad.

Proof. The hypotheses of the lemma imply that T contains a cocircuit in
neither M1 nor M2, and that |E1|, |E2| ≥ 7. Let M = M1 ⊕3 M2, so that
M = M14M2. Proposition 2.12 asserts that (E1 − T, E2 − T ) is an exact
3-separation of M . Since M0 is internally 4-connected it follows that either
|E(M0)∩(E1−T )| ≤ 3 or |E(M0)∩(E2−T )| ≤ 3. By relabeling if necessary
we will assume the former.

Let (A, B) be a partition of E1 − (T ∪ E(M0)) such that M0 is a minor
of M/A\B. We can assume that A is independent in M . Note that as
|E1 − T | ≥ 4 it follows that A ∪ B is non-empty. Let N = M1/A\B.
Proposition 2.2 says that M/A\B = N4M2.

Assume that rN (T ) = 0. It is easy to see that (E(N) − T, E(M2) − T )
is a 1-separation of M/A\B. As M0 is internally 4-connected and E(M0) ∩
(E2 − T ) is non-empty it follows that E(N)− T = ∅. Thus E(N) = T and
N consists of three loops. Proposition 2.5 implies that N4M2 = M2/T , and
as M0 is a minor of M/A\B = N4M2 it follows that M2 has an M0-minor,
a contradiction.

Next we assume that rN (T ) = 1. Since A is independent in M it must
be independent in M1. There is a circuit C ′ ⊆ A ∪ T of M1 such that C ′

meets both A and T . Clearly C ′ cannot meet T in three elements as T is a
triangle of M1. Suppose that C ′ meets T in two elements. Then C ′4T is
a disjoint union of circuits of M1. Thus there is a circuit C ⊆ A ∪ T such
that C meets T in exactly one element. Let this element be e, and suppose
that T = {e, f, g}. If f ∈ clM1(A) then T ⊆ clM1(A), which implies that
rN (T ) = 0, contrary to hypothesis. Similarly g /∈ clM1(A), so e is a loop and
{f, g} is a parallel pair in N .

We will assume that E(N) − T 6= ∅. Assume that clN (E(N) − T ) does
not contain {f, g}. If C is a circuit of N4M2 that meets both E(N)−T and
E2−T then there must be a cycle Z of N such that Z−T = C∩(E(N)−T ).
Let C ′ ⊆ Z be a circuit of N such that C ′ ∩ (E(N) − T ) 6= ∅. It cannot
be the case that e ∈ C ′, as e is a loop of N . Similarly, C ′ cannot contain
both f and g. Our assumption means that C ′ cannot contain precisely one
of f and g. Therefore C ′ ⊆ E(N)− T . But this implies that C ′ contains a
circuit of N4M2 that is properly contained in C, a contradiction. Therefore
λN4M2(E(N) − T ) = 0, and this means that E(N) − T is empty, contrary
to hypothesis. Henceforth we will assume that {f, g} ⊆ clN (E(N)− T ).

Let B1 be a basis of N such that f ∈ B1. We show that there is no cycle
Z of N such that Z ⊆ B1 ∪ T and Z meets B1 − f . Suppose that Z is such
a cycle and let C ⊆ Z be a circuit of N such that C ∩ (B1 − f) 6= ∅. As
B1 is independent in N it follows that C meets T − f . However C cannot
contain e as it is a loop of N . Moreover C cannot contain {f, g} as it is a
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parallel pair in N . Thus C ∩ T = {g}. But then (C − g) ∪ f is a circuit of
N contained in B1, a contradiction.

Since T is a coindependent triangle of M2 it follows that there is a basis
B2 of M2 such that B2 ∩T = {e}. The argument in the previous paragraph
implies that if (B1− f)∪ (B2− e) is dependent in N4M2, then B2− e must
contain a circuit C of N4M2. But Proposition 2.17 implies that B2 − e
is independent in N4M2. Therefore (B1 − f) ∪ (B2 − e) is independent in
N4M2, so

(1) r(N) + r(M2)− 2 ≤ r(N4M2).

Let B be a basis of N4M2 restricted to E(N) − T . It cannot be the
case that B contains a circuit C of N , for C would be a cycle in N4M2.
Therefore B is independent in N , so

(2) rN4M2(E(N)− T ) ≤ rN (E(N)− T ) ≤ r(N).

Proposition 2.17 shows that B2 − e is a basis of E2 − T in N4M2. Thus

(3) rN4M2(E2 − T ) = r(M2)− 1.

By combining Equations (1), (2), and (3) we see that λN4M2(E(N)−T ) ≤ 1.
Now we see that E(N)− T contains exactly one element, x.

If x is not parallel to f and g in N then x is a loop or a coloop in N , and
it is easy to see that it is therefore a loop or coloop in N4M2, which leads
to a contradiction. Therefore {f, g, x} is a parallel class of N . Suppose that
M+

2 is the matroid obtained from M2 by adding an element x′ in parallel
to f . Now {f, x} and {f, x′} are cycles of N and M+

2 respectively. Thus
{x, x′} is a cycle of N4M+

2 and therefore either {x, x′} is a parallel pair,
or both x and x′ are loops of N4M+

2 . In either case

N4M2 = N4(M+
2 \x

′) = (N4M+
2 )\x′ ∼= (N4M+

2 )\x = (N\x)4M+
2 .

However Proposition 2.18 asserts that (N\x)4M+
2 is equal to M+

2 /e\f\g,
which is isomorphic to M2/e\g. Thus M2 has an M0-minor, a contradiction.

Therefore we suppose that E(N)− T = ∅. Proposition 2.18 tells us that
N4M2 is equal to M2/e\f\g. As M0 is a minor of N4M2 it follows that
M2 again has an M0-minor, contrary to hypothesis.

We must now consider the case that rN (T ) = 2. Suppose that E(N)− T
contains a circuit of size at most two in N . Then N\T contains a circuit of
size at most two. Since T is a triangle in both N and M2 it follows from
Proposition 2.3 that the restriction of N4M2 to E(N)−T contains a circuit
of size at most two. This implies that M0 has a circuit with at most two
elements, a contradiction.

Next we similarly assume that E(N) − T contains a cocircuit of size at
most two in N . Then N/T contains a cocircuit of size at most two. However,
T is coindependent in M2, which means that T comprises three loops in
M2/(E(M2)− T ). Now Proposition 2.5 says that N/T is equal to

N4(M2/(E(M2)− T )) = (N4M2)/(E(M2)− T )).
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Thus E(N) − T contains a cocircuit of size at most two in N4M2. This
implies that M0 contains a cocircuit of size at most two, a contradiction.

We have shown that every circuit and cocircuit of N that is contained
in E(N) − T has size at least three. As |E(N) − T | ≤ 3 it is now easy to
see that either N is isomorphic to M(K4), or r(N) = 2 and N contains
exactly three parallel classes, each one of size at most two. Suppose that N
is isomorphic to M(K4). In this case N4M2 is equal to ∆T (M2), so ∆T (M2)
has an M0-minor. Moreover T is a triad of ∆T (M2) by Proposition 2.6. As
T ⊆ E(M0) and M0 has no cocircuits of size less than three it follows that
M0 has at least one triad, as desired.

Finally we assume that every element in E(N)−T is parallel to an element
of T in N , and that N contains no parallel class of more than two elements.
By using the same arguments as before we see that we can replace every
element in N that is parallel to an element in T with an element in M2 that
is parallel to the same member of T . Thus we can assume that E(N) = T .
Now it follows easily from Proposition 2.3 that N4M2 is isomorphic to a
minor of M2. Thus M2 has an M0-minor, a contradiction. This completes
the proof of the lemma. �

2.5. Möbius matroids. In this section we describe the Möbius matroids.
The cubic Möbius ladder CM2n is the cubic graph obtained from an even
cycle with vertices v0, . . . , v2n−1 by joining each vertex vi to the antipodal
vertex vi+n. (Indices are to be read modulo 2n.) The quartic Möbius lad-
der QM2n+1 is the quartic graph obtained from an odd cycle with vertices
v0, . . . , v2n by joining each vertex vi to the two antipodal vertices vi+n and
vi+n+1. (In this case indices are read modulo 2n + 1.) In either case, the
edges of the cycle are known as rim edges, and the diagonal edges are known
as spokes.

Triangular Möbius matroids. Let r be an integer exceeding two and let
{e1, . . . , er} be the standard basis in the vector space of dimension r over
GF(2). For 1 ≤ i ≤ r−1 let ai be the sum of ei and er, and for 1 ≤ i ≤ r−2
let bi be the sum of ei and ei+1. Let br−1 be the sum of e1, er−1, and er.
The rank-r triangular Möbius matroid, denoted by ∆r, is represented over
GF(2) by the set {e1, . . . , er, a1, . . . , ar−1, b1, . . . , br−1}. Thus ∆r has rank
r and |E(∆r)| = 3r−2. Deleting er from ∆r produces a matroid isomorphic
to the bond matroid of a cubic Möbius ladder. We say that a1, . . . , ar−1 and
e1, . . . , er−1 are the rim elements of ∆r, and that b1, . . . , br−1 are the spoke
elements. It is easy to see that if r ≥ 4, then ∆r has ∆r−1 as a minor.

Triadic Möbius matroids. Let r ≥ 4 be an even integer, and again let
{e1, . . . , er} be the standard basis of the vector space over GF(2) of di-
mension r. For 1 ≤ i ≤ r − 2 let ci be the sum of ei, ei+1, and er. Let cr−1

be the sum of e1, er−1, and er. The rank-r triadic Möbius matroid, denoted
by Υr, is represented over GF(2) by the set {e1, . . . , er, c1, . . . , cr−1}. Thus
Υr has rank r and |E(Υr)| = 2r − 1. If r ≥ 4 is an even integer then Υr\er
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is isomorphic to the bond matroid of a quartic Möbius ladder. We say that
e1, . . . , er−1 are the rim elements of Υr and c1, . . . , cr−1 are spoke elements.
If r is an even integer greater than 4, then Υr has Υr−2 as a minor.

3. Other classes of binary matroids

Recall that if M is a set of binary matroids, then EX (M) is the class
of binary matroids that have no minors in M. Let M be a subset of the
collection

{M(K3,3), M∗(K3,3), M(K5), M∗(K5)}
with the property that M contains either M(K3,3) or its dual. There are
exactly twelve classes of binary matroids of the form EX (M). Theorem 1.1,
and the famous graph-theoretical results of Hall [6] and Wagner [23], lead
to characterizations of the internally 4-connected matroids in each of these
classes. The first such characterization is given by Theorem 1.1.

Lemma 3.1. The triangular and triadic Möbius matroids have no
M(K5)-minors.

Proof. Lemma 3.8 of [12] states that the only internally 4-connected non-
cographic minors of Möbius matroids are themselves Möbius matroids. Thus
if a Möbius matroid had an M(K5)-minor it would imply that M(K5) is a
Möbius matroid. But the only rank-4 Möbius matroid with a ground set of
size ten is ∆4, and ∆4 has only nine triangles. Thus no Möbius matroid has
an M(K5)-minor. �

The next result follows from Lemma 3.1 and a simple computer check.

Theorem 3.2. An internally 4-connected binary matroid M has no
M(K3,3)-minor and no M(K5)-minor if and only if M is either:

(i) cographic;
(ii) isomorphic to ∆r for some integer r ≥ 3 or to Υr for some even integer

r ≥ 4; or,
(iii) isomorphic to one of the following sporadic matroids: C11, C12, Ma

5,12,
M6,13, M7,15, M9,18, or M11,21.

Wagner [23] characterized the graphs with no K5-minor (see also [9, The-
orem 1.6].) The following matroidal corollary of his theorem is well known,
although its proof seems not to appear in the literature.

Lemma 3.3. If M is an internally 4-connected cographic matroid with no
minor isomorphic to M∗(K5) then either M = M∗(G), where G is a planar
graph, or M is isomorphic to one of M∗(K3,3) or M∗(CM8).

It is easy to check using a computer that ∆6 has an M∗(K5)-minor, and
therefore ∆r has an M∗(K5)-minor for all r ≥ 6. On the other hand ∆r has
no M∗(K5)-minor if r ∈ {3, 4, 5}. Similarly Υr has an M∗(K5)-minor if
r ≥ 6, but Υ4 has no M∗(K5)-minor. We note that ∆3

∼= F7 and Υ4
∼= F ∗

7 .
The next theorem follows from these facts, and by applying Theorem 1.1,
Lemma 3.3, and some computer tests.
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Theorem 3.4. An internally 4-connected binary matroid M has no
M(K3,3)-minor and no M∗(K5)-minor if and only if M is either:

(i) planar graphic;
(ii) isomorphic to one of the cographic matroids M∗(K3,3) or M∗(CM8);
(iii) isomorphic to one of the following Möbius matroids: F7, F ∗

7 , ∆4, ∆5;
or,

(iv) isomorphic to one of the 18 sporadic matroids of Theorem 1.1, other
than T12.

A result due to Hall [6] implies that the only 3-connected cographic ma-
troids with no M∗(K3,3)-minor are M∗(K5), and cycle matroids of planar
graphs. The only Möbius matroids with no M∗(K3,3)-minor are ∆3

∼= F7,
Υ4

∼= F ∗
7 , and Υ6. Corollary 2.15 of [12] says that the only internally 4-con-

nected binary matroids that are non-cographic and have no minor isomor-
phic to either M(K3,3) or ∆4 are F7, F ∗

7 , M(K5), T12\e, T12/e, and T12. A
computer check reveals that none of these matroids has an M∗(K3,3)-minor.
Both T12 and T12/e are among the sporadic matroids of Theorem 1.1, while
T12\e ∼= Υ6. Since ∆4 has an M∗(K3,3)-minor, the next result follows.

Theorem 3.5. An internally 4-connected binary matroid M has no
M(K3,3)-minor and no M∗(K3,3)-minor if and only if M is either:

(i) planar graphic;
(ii) isomorphic to the cographic matroid M∗(K5);
(iii) isomorphic to one of the following Möbius matroids: F7, F ∗

7 , or Υ6;
or,

(iv) isomorphic to one of the following sporadic matroids: M(K5), T12/e,
or T12.

The next theorems are easy consequences of results stated above.

Theorem 3.6. An internally 4-connected binary matroid M belongs to
EX (M(K3,3), M(K5), M∗(K5)) if and only if M is either:

(i) planar graphic;
(ii) isomorphic to one of the cographic matroids M∗(K3,3) or M∗(CM8);
(iii) isomorphic to one of the following Möbius matroids: F7, F ∗

7 , ∆4, ∆5;
or,

(iv) isomorphic to one of the following sporadic matroids: C11, C12, Ma
5,12,

M6,13, M7,15, M9,18, or M11,21.

Theorem 3.7. An internally 4-connected binary matroid M belongs to
EX (M(K3,3), M∗(K3,3), M(K5)) if and only if M is either:

(i) planar graphic;
(ii) isomorphic to the cographic matroid M∗(K5); or,
(iii) isomorphic to one of the following Möbius matroids: F7, F ∗

7 , or Υ6.

Finally, we have the following characterization, which has already been
proved by Qin and Zhou [16].
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Theorem 3.8. An internally 4-connected binary matroid M belongs to
EX (M(K3,3), M∗(K3,3), M(K5),M∗(K5)) if and only if M is either:

(i) planar graphic; or,
(ii) isomorphic to one of F7 or F ∗

7 .

By dualizing Theorems 1.1, 3.2, 3.4, 3.6, and 3.7, we obtain five additional
characterizations of classes.

4. Polynomial-time algorithms

In this section we show that our structural characterizations lead to
polynomial-time algorithms for deciding membership in each of the twelve
classes of binary matroids described in Section 3; at least as long as the
input consists of a matrix over GF(2). We will set aside consideration of
oracle algorithms for the moment and return to them later.

4.1. Algorithms for binary matroids. For now we assume that a binary
matroid on a ground set of size n is described by a matrix over GF(2) with
n columns. We can assume that such a matrix has no more than n rows.
The next result, due to Cunningham and Edmonds (see [1, Section 6.5.3]),
relies upon the matroid intersection algorithm of Edmonds [4].

Proposition 4.1. For each k ∈ {1, 2} there is a polynomial-time algorithm
that will either output a k-separation of a binary matroid M , or decide that
M has no such separation. Moreover there is a polynomial-time algorithm
that, for a binary matroid M , will either output a 3-separation (X1, X2) of
M such that |X1|, |X2| ≥ 4, or decide that no such separation exists.

If M is a rank-r binary matroid with no loops, then we can consider M as
a multiset of points in the projective space P = PG(r−1, 2). If X ⊆ E(M),
then X is represented by a multiset of points in P , and we use clP (X) to
denote the span of this set in P . The next result is well known, al beit
difficult to find in the literature.

Proposition 4.2. Let M be a binary matroid of rank r, and let P =
PG(r − 1, 2). Suppose that (X1, X2) is an exact k-separation of M for
some k ∈ {1, 2, 3} with the property that if k = 3 then |X1|, |X2| ≥ 4 and
rM (X1), rM (X2) ≥ 3. Let Z = clP (X1)∩clP (X2), and for i = 1, 2 let Mi be
the binary matroid represented by the multiset Xi∪Z. Then M ∼= M1⊕kM2.

The next result is an easy consequence of Proposition 4.2.

Corollary 4.3. There is a polynomial-time algorithm that, given a rep-
resentation of a loopless binary matroid M and a partition (E(M1) −
E(M2), E(M2) − E(M1)) of E(M), where M is the k-sum of binary ma-
troids M1 and M2 for some k ∈ {1, 2, 3}, will output representations of M1

and M2.
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The central idea of Seymour’s algorithm for recognizing regular matroids,
and of our algorithms, is that a binary matroid can be decomposed into
internally 4-connected components. We now make this idea more formal.

Suppose that M is a binary matroid such that si(M) is 3-connected. Let
T be a set of pairwise disjoint triangles in M . We recursively define a rooted
tree, called a decomposition tree of (M, T ) (or just a decomposition tree of
M), denoted by Φ(M, T ). Each node is labeled with a matroid and a set
of disjoint triangles of that matroid. Each node of Φ(M, T ) has indegree
one, apart from the root, which has indegree zero. Moreover each node has
outdegree either zero or two. Those vertices with outdegree zero are called
leaves.

If si(M) is internally 4-connected then Φ(M, T ) comprises a single node:
the root, which is labeled (M, T ). If si(M) is not internally 4-connected then
there is an exact 3-separation (Y1, Y2) of si(M) such that |Y1|, |Y2| ≥ 4. This
naturally induces a separation of M , as follows: Recall that the ground set
of si(M) is the set of parallel classes of M . Let (X1, X2) be the partition of
E(M) defined so that x ∈ X1 if and only if clM ({x}) ∈ Y1. Thus (X1, X2)
is an exact 3-separation of M , and |X1|, |X2| ≥ 4. Let r = r(M) and let
T = clP (X1) ∩ clP (X2), where P = PG(r − 1, 2). Thus if Mi = P |(Xi ∪ T )
for i = 1, 2, then T is a triangle of both M1 and M2, and M = M1 ⊕3 M2,
by Proposition 4.2.

We want each of the triangles in T to be contained in either X1 or X2.
If a triangle T ∈ T contains elements from both X1 and X2, then, up to
relabeling, T contains exactly one element of X2. We shift this element
into X1, and add a parallel element to take its place in X2. More precisely:
Suppose that T1, . . . , Tp is the list of triangles in T that are contained in
neither X1 nor X2. We make the following assignments. Let M (0) = M .
For i = 1, 2 let M

(0)
i = Mi and let X

(0)
i = Xi. For k = 1, . . . , p, let {i, j} =

{1, 2}, and assume that exactly one element, e, of Tk is contained in X
(k−1)
i .

We obtain M (k) by adding a new element ek to M (k−1) so that it is parallel
to e. We let X

(k)
i = (X(k−1)

i − e) ∪ ek, and we let X
(k)
j = X

(k−1)
j ∪ e. Since

e ∈ clM(k−1)(X(k−1)
1 ) ∩ clM(k−1)(X(k−1)

2 ) it follows that e must be parallel to
an element t of T in M

(k−1)
i . We obtain M

(k)
i from M

(k−1)
i by relabeling

the element e with ek and we obtain M
(k)
j from M

(k−1)
j by adding e parallel

to t. Note that (X(k)
1 , X

(k)
2 ) is an exact 3-separation of M (k), and that the

number of rank-one flats in both X
(k)
1 and X

(k)
2 is at least four. It is easy

to see that M (k) = M
(k)
1 ⊕3 M

(k)
2 .

Let M+ = M (p), and for i = 1, 2 let M+
i = M

(p)
i . Thus si(M+) = si(M),

and M+ = M+
1 ⊕3M

+
2 . Moreover si(M+

i ) = si(Mi) for i = 1, 2. Furthermore
every triangle in T is contained in either X

(p)
1 or X

(p)
2 . We let (T1, T2) be

the partition of T induced by (X(p)
1 , X

(p)
2 ).
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Note that both si(M+
1 ) and si(M+

2 ) are 3-connected by Proposition 2.14.
We recursively define Φ(M, T ) to be the decomposition tree obtained by
starting with the root, labeled (M, T ), adding two new vertices labeled by
(M+

1 , T1∪{T}) and (M+
2 , T2∪{T}), adding arcs from the root to these two

vertices, and then identifying the new vertices with the roots of Φ(M+
1 , T1∪

{T}) and Φ(M+
2 , T2 ∪ {T}) respectively.

Observe that, as M+
1 and M+

2 have strictly fewer rank-one flats than M ,
it must be the case that this recursive procedure will eventually terminate.
Thus the leaves of Φ(M, T ) are labeled with pairs (M1, T1), . . . , (Mp, Tp)
such that si(Mi) is internally 4-connected for all i ∈ {1, . . . , p}, and Ti is
a set of pairwise disjoint triangles in Mi. Note that Φ(M, T ) need not be
unique: rather it depends upon our choice of 3-separations.

Proposition 4.4. Suppose that M is a binary matroid such that si(M) is
3-connected and that T is a set of disjoint triangles of M . Let n be the
number of rank-one flats of M . Then the number of leaves in Φ(M, T ) is
at most max{1, n− 6}.

Proof. The proof is by induction on n. If n ≤ 7 then si(M) is internally
4-connected, so Φ(M, T ) has one leaf and we are done. Thus assume that
n > 7 and that si(M) is not internally 4-connected. Suppose that the
children of M in Φ(M, T ) are labeled (M+

1 , T1 ∪ {T}) and (M+
2 , T2 ∪ {T})

respectively. For i = 1, 2 let the number of rank-one flats in M+
i be ni.

Then n1 + n2 ≤ n + 3. Since n1, n2 < n the inductive hypothesis implies
that Φ(M+

1 , T1 ∪ {T}) and Φ(M+
2 , T2 ∪ {T}) have at most max{1, n1 − 6}

and max{1, n2 − 6} leaves respectively. The result follows easily. �

Proposition 4.5. There is a polynomial-time algorithm which, given a bi-
nary matroid M with the property that si(M) is 3-connected, and a set T of
pairwise disjoint triangles of M , will compute a decomposition tree Φ(M, T ).

Proof. Let n = E(M). We can assume that n ≥ 7. Note that |T | ≤ n/3.
Proposition 4.4 implies that the number of leaves in any decomposition tree
of M is at most n−6. Thus Φ(M, T ) has at most n−7 non-leaf vertices. It
follows that if a node of Φ(M, T ) is labeled with (Mi, Ti) then |Ti| ≤ 4n/3−
7. Each triangle in Ti contributes at most one extra element to the matroids
which label the children of (Mi, Ti). It follows that if (Mj , Tj) is a node
label then Mj has at most n + (4n/3− 7)(n− 7) elements. Proposition 4.1
and Corollary 4.3 imply the existence of a polynomial-time algorithm which
finds the two terms of each decomposition along a 3-sum. Suppose that this
algorithm runs in time bounded by nk for an n-element matroid, where k is
a fixed constant. Clearly, given a representation of an n-element matroid, it
is possible to construct a representation of the simplification of that matroid
in time bounded by n2. It follows that there is an algorithm that constructs
Φ(M, T ) in time bounded by

(n− 7)(n + (4n/3− 7)(n− 7))k+2. �
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Proposition 4.6. Let M0 be a simple binary matroid. Suppose that M is a
binary matroid such that si(M) is 3-connected and that T is a set of pairwise
disjoint triangles of M . Let Φ(M, T ) be a decomposition tree of M . If there
is some leaf of Φ(M, T ) labeled (Mi, Ti), where Mi has an M0-minor, then
M has an M0-minor.

Proof. The proof is by induction on the number of vertices in Φ(M, T ).
If Φ(M, T ) has only one node then Mi must be equal to M and the re-
sult is trivial. Suppose that Φ(M, T ) has more than one node, and sup-
pose that the children of (M, T ) are labeled with (M+

1 , T1 ∪ {T}) and
(M+

2 , T2 ∪ {T}). Without loss of generality we can assume that the leaf
labeled by (Mi, Ti) belongs to Φ(M+

1 , T1 ∪ {T}). By induction M+
1 has an

M0-minor. Proposition 2.13 says that M+ = M+
1 ⊕3 M+

2 has an M0-mi-
nor. But si(M+) = si(M), and as M0 is simple it follows that M has an
M0-minor. �

Proposition 4.7. Suppose that M0 is an internally 4-connected binary ma-
troid such that |E(M0)| ≥ 4 and M0 has no triads. Suppose also that M is
a binary matroid such that si(M) is 3-connected, and that T is a collection
of pairwise disjoint triangles of M . Let Φ(M, T ) be a decomposition tree of
M . If M has an M0-minor then there is a leaf of Φ(M, T ) labeled (Mi, Ti)
such that Mi has an M0-minor.

Proof. The proof is by induction on the number of vertices in Φ(M, T ). If
Φ(M, T ) has only one node the result is obvious. Suppose that Φ(M, T ) has
more than one node and assume that the children of (M, T ) are (M+

1 , T1 ∪
{T}) and (M+

2 , T2 ∪ {T}). If either M+
1 or M+

2 has an M0-minor then
the result follows by induction. Therefore we assume that neither M+

1 nor
M+

2 has an M0-minor. However, if M+ = M+
1 ⊕3 M+

2 then si(M+) ∼= M .
Therefore M+ has an M0-minor. Lemma 2.19 implies that M0 contains at
least one triad, a contradiction. �

Suppose that M is a binary matroid and that T is a set of pairwise
disjoint triangles of M . We define ∆(M ; T ) to be the matroid produced by
performing ∆-Y operations on each of the triangles in T . Proposition 2.8
tells us that ∆(M ; T ) is well-defined. The next result follows from repeated
application of Proposition 2.16.

Proposition 4.8. Suppose that M1 and M2 are binary matroids and that
the 3-sum of M1 and M2 along the triangle T is defined. For i = 1, 2 let Ti

be a set of pairwise disjoint triangles of Mi that do not meet T . Then

∆(M1; T1)⊕3 ∆(M2; T2) = ∆(M1 ⊕3 M2; T1 ∪ T2).

Proposition 4.9. Let M0 be a 3-connected binary matroid such that
|E(M0)| ≥ 4 and M0 has no triangles. Suppose that M is a binary ma-
troid and that T is a collection of pairwise disjoint triangles of M . Suppose
that the element e is in a parallel pair in M . If ∆(M ; T ) has an M0-minor
then ∆(M ; T )\e has an M0-minor.
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Proof. The proof is by induction on the number of triangles in T . If T is
empty then the result is obvious, as M0 has no parallel pairs. Suppose that
T1, . . . , Tp are the triangles in T . Define M (0) to be M , and for i = 1, . . . , p

define M (i) to be ∆Ti(M
(i−1)). Thus M (p) = ∆(M ; T ). If e is in a parallel

pair in M (1) then the result follows by the inductive hypothesis, as M (p) =
∆(M (1); T −{T1}). Therefore we will assume that e is not in a parallel pair
in M (1). Since e is in a parallel pair in M (0) we conclude that e is parallel
to an element t of T1 in M (0). If p > 1 then Proposition 2.7 implies that
{e, t} is a parallel pair in ∆T2(M). Using Proposition 2.8 we can apply the
inductive hypothesis to M (p) = ∆(∆T2(M); T − {T2}) and conclude that
the result holds. Therefore we will assume that p = 1.

Note that {e, t} is a cycle of M . It is easy to see that (T1 − t) ∪ e is
a triangle of ∆T1(M). Let T1 − t = {t0, t1}. Suppose that ∆T1(M)/t0
has an M0-minor. As {e, t1} is a parallel pair in ∆T1(M)/t0 it follows
that ∆T1(M)/t0\e has an M0-minor, and we are done. Therefore we will
assume that ∆T1(M)/t0 has no minor isomorphic to M0, and (by the same
argument), neither does ∆T1(M)/t1.

If t0 is in a series pair of ∆T1(M) then ∆T1(M)/t0 must have an M0-minor,
contrary to our assumption. Therefore we assume that neither t0 nor t1
(by the same argument) is in a series pair in ∆T1(M). Propositions 2.7
and 2.10 imply that T1 contains a cocircuit of ∆T1(M). Clearly neither t0
nor t1 is a coloop of ∆T1(M), so we conclude that either t is a coloop or
T1 is a triad in ∆T1(M). Suppose that the former holds. If there were a
circuit of M which met T1 in exactly t0 or t1 then we could find a circuit of
∆T1(M) which contained t. Therefore no such circuit exists. It follows that
{t0, t1} is a series pair in M . As {e, t0, t1} is a triangle of M\t it follows
that {t0, t1} is also a series pair in M\t, which is equal to ∆T1(M)/t by
Proposition 2.9. Thus {t0, t1} is a series pair of ∆T1(M), contrary to our
conclusion. Therefore T1 is a triad of ∆T1(M).

As M0 contains no triangles we must delete an element of (T1 − t) ∪ e
from ∆T1(M) to obtain an M0-minor. If this element is e then we are done,
so assume that it is t0 (the case when it is t1 is identical). But {t, t1} is a
series pair of ∆T1(M)\t0, so ∆T1(M)\t0/t1, and hence ∆T1(M)/t1 has an
M0-minor, contrary to our earlier conclusion. This completes the proof. �

Lemma 4.10. Suppose that M0 is an internally 4-connected binary matroid
such that |E(M0)| ≥ 4 and M0 has no triangles. Suppose also that M is a
binary matroid such that si(M) is 3-connected, and that T is a collection
of pairwise disjoint triangles of M . Let Φ(M, T ) be a decomposition tree of
M . If M has an M0-minor then there is a leaf of Φ(M, T ) labeled (Mi, Ti)
with the property that ∆(Mi; Ti) has an M0-minor.

Proof. Let T = {T1, . . . , Tp}. Define M (0) to be M , and for i ∈ {1, . . . , p}
let M (i) be ∆Ti(M

(i−1)). Thus M (p) = ∆(M ; T ). We start by showing that
∆(M ; T ) has an M0-minor. If this is not the case there is some i ∈ {1, . . . , p}
such that M (i−1) has an M0-minor but M (i) does not. Since Ti is a triangle
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of M (i−1) and M0 has no triangles it follows that there is an element a ∈ Ti

such that M (i−1)\a has an M0-minor. But Proposition 2.9 says that

M (i)/a = ∆Ti(M
(i−1))/a = M (i−1)\a.

Therefore M (i) has an M0-minor, a contradiction.
Suppose that the lemma is false. The argument in the previous paragraph

shows that there is at least one node (Mi, Ti) such that ∆(Mi; Ti) has an
M0-minor. Suppose that (Mi, Ti) has been chosen so that if (Mj , Tj) is a
descendant of (Mi, Ti) then ∆(Mj ; Tj) does not have an M0-minor. Since
the lemma is false (Mi, Ti) cannot be a leaf node, so it has two children.
Let us suppose that they are labeled (M+

1 , T1 ∪ {T}) and (M+
2 , T2 ∪ {T}).

Assume that ∆(M+
j ; Tj) has an M0-minor, for some j ∈ {1, 2}. Repeated

use of Proposition 2.3 tells us that T is a triangle of ∆(M+
j ; Tj). Since M0

has no triangles there must be an element a ∈ T such that ∆(M+
j ; Tj)\a

has an M0-minor. But

∆(M+
j ; Tj)\a = ∆T (∆(M+

j ; Tj))/a = ∆(M+
j ; Tj ∪ {T})/a.

Therefore ∆(M+
j ; Tj ∪{T}) has an M0-minor, contrary to hypothesis. Thus

we conclude that neither ∆(M+
1 ; T1) nor ∆(M+

2 ; T2) has an M0-minor.
Let M+ = M+

1 ⊕3 M+
2 . Note that T1 ∪ T2 = Ti. But

(4) ∆(M+
1 ; T1)⊕3 ∆(M+

2 ; T2) = ∆(M+; Ti)

by Proposition 2.16. Let P = E(M+)− E(Mi), so that every element in P
is parallel to an element in E(Mi), and M+\P = Mi. The method we use
to construct the decomposition tree means that no triangle in Ti contains
an element of P . Repeated application of Proposition 2.2 implies that

∆(M+; Ti)\P = ∆(M+\P ; Ti) = ∆(Mi; Ti).

Therefore ∆(M+; Ti) has an M0-minor.
Since neither ∆(M+

1 ; T1) nor ∆(M+
2 ; T2) has an M0-minor, by considering

Equation (4) and applying Lemma 2.19 we see that ∆T (∆(M+
j ; Tj)) has an

M0-minor for some j ∈ {1, 2}. But

∆T (∆(M+
j ; Tj)) = ∆(M+

j ; Tj ∪ {T}),

so we have a contradiction to our choice of (Mi, Ti). This completes the
proof of the lemma. �

Lemma 4.11. Suppose that M0 is a 3-connected binary matroid such that
|E(M0)| ≥ 4 and M0 has no triangles. Suppose also that M is a binary
matroid such that si(M) is 3-connected, and that T is a set of pairwise
disjoint triangles of M . Let Φ(M, T ) be a decomposition tree of M . If there
is a leaf of Φ(M, T ) labeled (Mi, Ti) where ∆(Mi; Ti) has an M0-minor,
then ∆(M ; T ) has an M0-minor.



22 DILLON MAYHEW, GORDON ROYLE, GEOFF WHITTLE

Proof. The proof is by induction of the size of the decomposition tree. If
Φ(M, T ) has one node then the result is obvious. Therefore assume that
(M+

1 , T1 ∪ {T}) and (M+
2 , T2 ∪ {T}) are the children of (M, T ). We can

assume that (Mi, Ti) is a leaf in the decomposition tree Φ(M+
1 , T1 ∪ {T}).

The inductive hypothesis tells us that ∆(M+
1 ; T1 ∪ {T}) has an M0-minor.

Let M+ = M+
1 ⊕3 M+

2 . Proposition 4.8 says that

(5) ∆(M+
1 ; T1)⊕3 ∆(M+

2 ; T2) = ∆(M+; T ).

Suppose that T1, . . . , Tp are the triangles in T2. We know from Proposi-
tion 2.14 that si(M+

2 ) is 3-connected. Let N (0) = M+
2 , and for i = 1, . . . , p

let N (i) be ∆Ti(N
(i−1)). Thus N (p) = ∆(M+

2 ; T2). If si(∆(M+
2 ; T2)) is not

3-connected then there is an integer i ∈ {1, . . . , p} such that si(N (i−1)) is
3-connected but si(N (i)) is not. Then there must be a k-separation (X1, X2)
of N (i) where k < 3 and rN(i)(Xj) ≥ k for j = 1, 2. We will assume with-
out loss of generality that X1 contains at least two elements of Ti. Then
(X1 ∪ Ti, X2 − Ti) is a k′-separation of N (i) with the property that k′ ≤ k,
and rN(i)(X1 ∪ Ti), rN(i)(X2 − Ti) ≥ k′. Hence we can assume that Ti is
contained in X1. Now r(N (i−1)) = r(N (i)) − 1 by Proposition 2.10. It
follows from Proposition 2.2 that ∆T (N (i−1)|X1) = N (i)|X1. Therefore
rN(i−1)(X1) = rN(i)(X1)− 1 by Proposition 2.10. Now we see that (X1, X2)
is a k-separation of N (i−1) for some k < 3. Moreover rN(i−1)(X2) ≥ k,
and rN(i−1)(X1) ≥ 2 as X1 contains a triangle of N (i−1). This contradicts
the fact that si(N (i−1)) is 3-connected. We conclude that si(∆(M+

2 ; T2)) is
3-connected.

Since M+
2 has at least four rank-one flats (by construction), it follows

easily that ∆(M+
2 ; T2) has at least four rank-one flats. Moreover ∆(M+

2 ; T2)
contains a triangle, so r(si(∆(M+

2 ; T2))) ≥ 3. No triangle can contain a
cocircuit in a 3-connected matroid. Therefore T is a coindependent triangle
in si(∆(M+

2 ; T2)), so the corank of si(∆(M+
2 ; T2)) is at least three. It follows

without difficulty from Lemma 2.1 that ∆(M+
2 ; T2) has a minor M ′ such

that M ′ ∼= M(K4) and T is a triangle of M ′.
By Proposition 2.2 we see that ∆(M+

1 ; T1) ⊕3 ∆(M+
2 ; T2) has

(∆(M+
1 ; T1))4(M ′) as a minor. But this last matroid is precisely

∆(M+
1 ; T1 ∪ {T}), which we know to have an M0-minor. By consider-

ing Equation (5) we conclude that ∆(M+; T ) has an M0-minor. Since
si(M+) ∼= M repeated application of Proposition 4.9 tells us that ∆(M ; T )
has an M0-minor, as desired. �

Corollary 4.12. Suppose that M0 is a 3-connected binary matroid such
that |E(M0)| ≥ 4 and M0 has no triangles. Suppose also that M is a binary
matroid such that si(M) is 3-connected. Let Φ(M, ∅) be a decomposition
tree of M and suppose that there is a leaf of Φ(M, ∅) labeled (Mi, Ti) where
∆(Mi; Ti) has an M0-minor. Then M has an M0-minor.
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The following lemma (which follows easily from the previous results in
this section), should make clear our strategy for deciding whether a binary
matroid contains a minor from a particular class.

Lemma 4.13. Suppose that M is a collection of internally 4-connected
binary matroids such that each matroid in M has at least four elements,
and no matroid in M contains both a triangle and a triad. Let MΥ be the
set of matroids in M that contain at least one triad. Suppose that M is a
3-connected binary matroid and that there is a decomposition tree of M , the
leaves of which are labeled (M1, T1), . . . , (Mp, Tp). Then M has a minor in
M if and only if:

(i) there is a leaf (Mi, Ti) such that Mi has a minor in M; or,
(ii) there is a leaf (Mi, Ti) such that ∆(Mi; Ti) has a minor in MΥ.

(Indeed Lemma 4.13 is true even if we replace M in statement (i) of the
lemma with M−MΥ.) In our case M is a subset of {M(K3,3), M(K5),
M∗(K3,3), M∗(K5)} and either M(K3,3) or M∗(K3,3) is contained in M.
There are two tasks left to consider: For each leaf (Mi, Ti) of a decomposition
tree we must decide whether si(Mi) has a minor in M, and if this is not the
case for any leaf we must decide whether ∆(Mi; Ti) has a minor in MΥ.

The next result was first proved by Tutte [22] (see also [1, Section 7.2]).

Proposition 4.14. There is a polynomial-time algorithm which, given a
binary matroid M , will either return a graph G such that M(G) = M , or
decide that no such graph exists.

It follows immediately that we can also decide in polynomial time whether
a binary matroid is cographic or planar graphic.

Proposition 4.15. There is a polynomial-time algorithm which, given a
binary matroid M , will decide whether M is isomorphic to ∆r for some
integer r ≥ 3, or to Υr for some even integer r ≥ 4.

Proof. We claim that it is possible to decide in polynomial time whether a
graph is isomorphic to a Möbius ladder. To see this, we observe that the
rim edges of a Möbius ladder are precisely those edges in a unique cycle of
length four. Thus we can identify the rim edges in polynomial time and
verify that they form a Hamiltonian cycle v0, . . . , vt. Let n = bt/2c. If t is
even and each remaining edge joins a vertex vi to vi+n, then the graph is a
cubic Möbius ladder. If t is odd and each remaining edge joins a vertex vi

to either vi+n or vi+n+1, then the graph is a quartic Möbius ladder. This
completes the proof of the claim.

If a binary matroid M is isomorphic to ∆r then there is an element
e ∈ E(M) such that M\e is isomorphic to M∗(CM2r−2), the bond matroid
of the cubic Möbius ladder CM2r−2. Thus to decide whether M ∼= ∆r,
where r = r(M), we consider each single-element deletion of M in turn and
decide in polynomial time whether it is isomorphic to M∗(CM2r−2), using
the algorithm of Proposition 4.14 and the claim in the previous paragraph.
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(Note that if G is a graph such that M∗(G) = M∗(CM2r−2) then G =
CM2r−2 by Whitney’s 2-isomorphism theorem.) If M\e ∼= M∗(CM2r−2)
then M ∼= ∆r if and only if e is in a circuit with all the spoke elements of
the Möbius ladder.

If M ∼= Υr then there is an element e ∈ (M) such that M\e ∼=
M∗(QMr−1), and e is in a circuit with the spoke elements of the quartic
Möbius ladder. Thus a similar argument works in the case of the triadic
Möbius matroids. �

Next we consider the problem of identifying when ∆(Mi; Ti) has a minor
inMΥ, where si(Mi) is an internally 4-connected matroid such that si(Mi) ∈
EX (M) and Ti is a set of pairwise disjoint triangles of Mi.

Proposition 4.16. Suppose that M is a binary matroid such that r(M) ≥ 3
and si(M) is 3-connected. Let T be a set of pairwise disjoint triangles of M .
If there are triangles T1, T2 ∈ T such that rM (T1 ∪ T2) = 2 then ∆(M ; T )
has an M(K3,3)-minor.

Proof. Recall that we take the ground set of si(M) to be the set of rank-one
flats of M . Let T = clM (T1), so that T is a triangle of si(M). By the
hypotheses we know that r(si(M)) ≥ 3. Furthermore si(M) is 3-connected,
so T must be coindependent in si(M). Therefore r∗(si(M)) ≥ 3. Now
Lemma 2.1 says that si(M) has a minor isomorphic to M(K4) in which T is
a triangle. Therefore M has a minor M ′ isomorphic to the matroid produced
from M(K4) by adding parallel elements to the points in a triangle; and
moreover T1 and T2 are triangles of M ′.

It follows from Proposition 2.2 that ∆T2(∆T1(M
′)) is a minor of

∆T2(∆T1(M)). However ∆T2(∆T1(M
′)) is isomorphic to M(K3,3). Suppose

that the members of T are T1, . . . , Tp. Let M (0) = M , and for i ∈ {1, . . . , p},
let M (i) be ∆Ti(M

(i−1)). Thus M (2) has an M(K3,3)-minor. If ∆(M ; T )
does not have an M(K3,3)-minor then there is an integer i ∈ {3, . . . , p} such
that M (i) has no M(K3,3)-minor, but M (i−1) does. Since Ti is a triangle of
M (i−1) and M(K3,3) has no triangles there is an element a ∈ Ti such that
M (i−1)\a has an M(K3,3)-minor. Proposition 2.9 implies that M (i) has an
M(K3,3)-minor. This contradiction completes the proof. �

Proposition 4.17. Suppose that M is a cographic matroid such that
r(M) ≥ 3 and si(M) is internally 4-connected. Let T be a set of pair-
wise disjoint triangles of M and suppose that rM (T1∪T2) > 2 for every pair
of distinct triangles T1, T2 ∈ T . Then ∆(M ; T ) is cographic, and if M is
planar graphic then so is ∆(M ; T ).

Proof. Let G be a graph such that M = M∗(G). We can assume that G
contains no isolated vertices, and that furthermore, if e is a loop of M , then
there is a connected component of G that contains only the single edge, e.
Since M does not consist solely of loops there is a connected component G0

of G such that G0 contains more than one edge. Our assumption means
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that the minimum degree of G0 is at least two. We shall say that a vertex
of degree at least three in G0 is a branch vertex and that a path between
two distinct branch vertices is a branch. Thus a branch (along with all
single-edge components of G) is a rank-one flat of M .

Suppose that T is a triangle of M . Then T is a minimal edge cut-set of G.
Let T = {e1, e2, e3}. Note that no branch of G can contain more than one
element of T . For i = 1, 2, 3 let li be the branch of G that contains ei, and
let L = {l1, l2, l3}. Then G0\L contains exactly two connected components.
Let A and B be the edge sets of these two components.

Assume that both A and B are non-empty. We initially suppose that
both A and B contain at least two branches. If A contains more than two
branches then (A∪l1, B∪{l2, l3}) is a 3-separation of M that contradicts the
fact that si(M) is internally 4-connected. Therefore A (and by symmetry, B)
contains exactly two branches. Thus si(M) contains exactly seven elements.
As si(M) is cographic this means that r(si(M)) > 3. Now si(M) is internally
4-connected, and therefore contains no series pairs or coloops. Therefore
(si(M))∗ is a simple graphic matroid with seven elements and rank at most
three, a contradiction.

This means that without loss of generality we can assume that A contains
precisely one branch. But if v is the end vertex of l1 that is contained in the
subgraph induced by A, then v must be incident with at least two branches
in A, so we have a contradiction. Therefore we can assume that A is empty.
As G0 contains no vertices of degree one it follows that there is a degree-three
vertex vT that is incident with l1, l2, and l3.

Suppose that the edge f is contained in l1 but is distinct from e1. If we
swap the labels on e1 and f then the bond matroid of the resulting graph is
M . If T1 and T2 are distinct triangles in T then vT1 6= vT2 as rM (T1, T2) > 2.
Therefore we can assume that every triangle in T consists of three edges
incident with a degree-three vertex. It is clear that if we obtain G′ from G
by replacing each member of T with a triangle then M∗(G′) ∼= ∆(M ; T ).
Moreover if G is a planar graph then so is G′. �

Recall from Section 2.5 that the ground set of ∆r, the rank-r trian-
gular Möbius matroid, is {e1, . . . , er, a1, . . . , ar−1, b1, . . . , br−1}. For i ∈
{1, . . . , r− 1} the elements ei and ai are rim elements, while b1, . . . , br−1 are
spoke elements and er is the tip. The only triangles of ∆r are sets of the
form {ai, ei, er} for 1 ≤ i ≤ r − 1, the sets {ai, ai+1, bi} and {ei, ei+1, bi}
for 1 ≤ i ≤ r − 2, and the sets {a1, er−1, br−1} and {ar−1, e1, br−1}.

Lemma 4.18. Suppose that M is a binary matroid such that si(M) = ∆r

for some r ≥ 3. Let T be a collection of pairwise disjoint triangles of M
such that rM (T1∪T2) > 2 for all pairs of distinct triangles T1, T2 ∈ T . Then
∆(M ; T ) has an M(K3,3)-minor if and only if:

(i) There is a triangle T ∈ T such that clM (T ) = {ai, ei, er} for some
1 ≤ i ≤ r − 1;
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(ii) There are triangles T1, T2 ∈ T such that clM (T1) = {ai, ai+1, bi} and
clM (T2) = {ei, ei+1, bi} for some 1 ≤ i ≤ r − 2; or,

(iii) There are triangles T1, T2 ∈ T such that clM (T1) = {a1, er−1, br−1}
and clM (T2) = {ar−1, e1, br−1}.

Proof. Remember that the ground set of si(M) is the set of rank-one flats of
M . We can assume that M has no loops. Suppose that there is a triangle
T ∈ T such that clM (T ) = {ai, ei, er}. Let P be a set of elements such that
M\P ∼= si(M), so that M\P = ∆r. (We are abusing notation here: For
example, er is both an element of the ground set of M\P , and a rank-one
flat of M .) We can assume that T is a triangle of M\P . Now Claim 4.6
of [12] implies that ∆T (M\P ) has an M(K3,3)-minor. Therefore ∆T (M)\P
has an M(K3,3)-minor, and so does ∆T (M). Suppose that the members of
T are T1, . . . , Tp. Proposition 2.8 implies that we can assume T = T1. Let
M (0) = M , and for i ∈ {1, . . . , p} let M (i) = ∆Ti(M

(i−1)). If ∆(M ; T ) does
not have an M(K3,3)-minor then there must be an integer i such that M (i)

does not have an M(K3,3)-minor, but M (i−1) does. Now we can obtain a
contradiction exactly as in the proof of Proposition 4.16.

Next we will assume that T1 and T2 are members of T such that
clM (T1) = {ai, ai+1, bi} and clM (T2) = {ei, ei+1, bi}. Let P be a set of
elements such that M\P = ∆r. We can assume that T1 is a triangle of
M\P . Furthermore there is an element b ∈ P such that clM ({b}) = bi. We
can assume that T2 = {ei, ei+1, b} and that T2 is a triangle of M\(P − b).
Claim 4.7 of [12] tells us that ∆T2(∆T1(M\(P − b))) has an M(K3,3)-mi-
nor, so ∆T2(∆T1(M)) has an M(K3,3)-minor. Exactly as before we can
show that ∆(M ; T ) has an M(K3,3)-minor. The same argument shows that
∆(M ; T ) has an M(K3,3)-minor if there are triangles T1, T2 ∈ T such that
clM (T1) = {a1, er−1, br−1} and clM (T2) = {ar−1, e1, br−1}.

This completes the “if” direction of the proof. To prove the “only if”
direction we need to introduce a family of matroids derived from the trian-
gular Möbius matroids. For any positive integer r let ∆◦

r be obtained from
∆r by adding a′i in parallel to ai and e′i in parallel to ei, for 1 ≤ i ≤ r − 1.

Claim 4.19. Suppose that N is a restriction of ∆◦
r for some r ≥ 3 and

that T is a set of pairwise disjoint triangles of M with the property that
rM (T1 ∪ T2) > 2 for every pair of distinct triangles T1, T2 ∈ T , and T does
not satisfy conditions (i), (ii), or (iii) of Lemma 4.18. Then ∆(N ; T ) is a
restriction of ∆◦

s for some s ≥ 3.

Proof. Let T1, . . . , Tp be the members of T . The proof is by induction on
p. If T is empty then the result is trivial, so we will assume that p ≥ 1.
Note that T1 contains bi for some i ∈ {1, . . . , r − 1}, and that no other
member of T contains bi. Lemma 4.8 of [12] says that ∆T1(∆

◦
r) is isomorphic

to a restriction of ∆◦
r+1, and this isomorphism takes spoke elements other

than bi to spoke elements. Since N is a restriction of ∆◦
r it follows from

Proposition 2.2 that ∆T1(N) is isomorphic to a restriction of ∆◦
r+1, where
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the isomorphism again takes spoke elements other than bi to spoke elements.
Now it is easy to see that if we apply this isomorphism to {T2, . . . , Tp}
we obtain a collection of pairwise disjoint triangles of ∆◦

r+1 that does not
satisfy condition (i), (ii), or (iii) of the lemma. The claim now follows by
induction. �

We return to the proof of Lemma 4.18. Note that ∆◦
r can be obtained

from M by possibly adding and deleting parallel elements. Moreover, if
T is a collection of pairwise disjoint triangles of M such that T does not
satisfy condition (i), (ii), or (iii) of the lemma, then T is also a collection of
pairwise disjoint triangles of ∆◦

r . Since ∆r, and hence ∆◦
r does not have an

M(K3,3)-minor for any r ≥ 3 it follows from Claim 4.19 that ∆(∆◦
r ; T ) does

not have an M(K3,3)-minor. Propositions 2.2 and 4.9 imply that ∆(M ; T )
has no M(K3,3)-minor, and this completes the proof. �

Now we prove our main result.

Theorem 1.2. Suppose that M is a subset of the family {M(K3,3), M(K5),
M∗(K3,3), M∗(K5)} such that M contains either M(K3,3) or M∗(K3,3).
There is an algorithm which, given a matrix A over GF(2) with n columns
(and at most n rows), will decide whether M [A] has a minor in M, in time
that is bounded by a polynomial function of n.

Proof. Clearly if we can decide membership in a class of matroids in polyno-
mial time, then we can also decide membership in the dual class. Therefore
we will always assume that M(K3,3) ∈ M. It is not difficult to see that
it will suffice to construct a polynomial-time algorithm which will decide
membership in EX (M) when M [A] is 3-connected.

Let M = M [A]. By Proposition 4.5 we can construct a decomposition
tree Φ(M, ∅) in polynomial-time. First let us assume that M∗(K5) /∈ M.
Note that if (Mi, Ti) is a leaf of Φ(M, ∅) then |E(si(Mi))| ≤ n. By Propo-
sitions 4.14 and 4.15 we can decide in polynomial time whether si(Mi) is
cographic, planar graphic, or isomorphic to a Möbius matroid, for each leaf
(Mi, Ti) of Φ(M, ∅). Certainly we can decide whether si(Mi) is isomorphic
to one of a finite number of fixed matroids. Therefore, by examining The-
orems 1.1, 3.2, 3.5, and 3.7, we see that we can decide in polynomial time
whether Mi has a minor in M, for each leaf (Mi, Ti). If some Mi has a
minor in M, then so does M , by Proposition 4.6, in which case we can stop.
Therefore we suppose that each Mi belongs to EX (M).

Since the only matroid in M with any triads is M(K3,3), it follows
from Proposition 4.7 that if M has a minor in M then M must have an
M(K3,3)-minor. By Lemma 4.10 and Corollary 4.12 this is true if and
only if there is a leaf (Mi, Ti) such that ∆(Mi; Ti) has an M(K3,3)-mi-
nor. Note that by definition of 3-sum it follows that r(si(M)) ≥ 3 for every
leaf (Mi, Ti). Propositions 4.16 and 4.17 imply that if si(M) is cographic or
planar graphic then ∆(Mi; Ti) has an M(K3,3)-minor if and only there is a
pair of distinct triangles in Ti whose union has rank two. Certainly we can
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decide whether this is true in polynomial time. Note that the triadic Möbius
matroids have no triangles. If si(Mi) is a triangular Möbius matroid then we
can decide whether ∆(Mi; Ti) has an M(K3,3)-minor by examining Ti and
using Proposition 4.16 and Lemma 4.18. Suppose that si(M) is isomorphic
to one of a finite number of fixed matroids. If there are two distinct trian-
gles in Ti whose union has rank two then ∆(Mi; Ti) has an M(K3,3)-minor.
Therefore we will assume that this is not the case. It follows that |Ti| is
bounded by some fixed constant. Now we can obtain the matroid M ′ by
adding parallel elements to si(Mi) in such a way that there is a set T of pair-
wise disjoint triangles in M ′, such that there is a natural bijection between
triangles in T and triangles in Ti. Moreover |E(M ′)| is bounded by some
constant. Therefore we can decide in constant time whether ∆(M ′; T ) has
an M(K3,3)-minor, and since Mi is obtained from M ′ by possibly adding
parallel elements it follows from Propositions 2.2 and 4.9 that ∆(M ′; T ) has
an M(K3,3)-minor if and only if ∆(Mi; Ti) does.

This completes the proof of the theorem in the case that M does not
contain M∗(K5). If M∗(K5) ∈ M then we proceed as before and construct
a decomposition tree Φ(M, ∅). By examining Theorem 3.4, Theorem 3.6,
and Theorem 3.8, we see that to decide whether Mi ∈ EX (M) for each leaf
(Mi, Ti) we need only decide whether si(Mi) is planar graphic or isomorphic
to one of a finite set of sporadic matroids. This can clearly be done in
polynomial time. Once again we will assume that Mi ∈ EX (M) for each
leaf (Mi, Ti), for otherwise we are done. Now Lemma 4.10 and Corollary 4.12
imply that M has a minor in M if and only if there is some leaf (Mi, Ti)
such that ∆(Mi; Ti) has either an M(K3,3)-minor, or an M∗(K5)-minor.
We can decide whether this is true in constant time if si(Mi) is isomorphic
to one of a set of sporadic matroids. Therefore the only thing left to do is
decide whether ∆(Mi; Ti) has a minor isomorphic to M(K3,3) or M∗(K5)
in the case that si(Mi) (and hence Mi) is planar graphic.

If there are distinct triangles T1, T2 ∈ Ti such that rMi(T1 ∪ T2) = 2 then
∆(Mi; Ti) has an M(K3,3)-minor by Proposition 4.16. If no two triangles in
T satisfy this condition then ∆(Mi; Ti) is planar graphic by Proposition 4.17,
and hence has no minor isomorphic to M(K3,3) or M∗(K5). This completes
the proof of the theorem. �

We conclude this section by noting that Möbius matroids have branch-
width four, so by using Hliněný’s [7] matroid analogue of Courcelle’s [3]
theorem, the minor-testing algorithm for graphs, due to Robertson and Sey-
mour [17], and Theorem 1.1, we can decide in polynomial-time whether a
represented internally 4-connected binary matroid belongs to any class of the
form EX (N ∪{M(K3,3)}), where N is any set of binary matroids. However,
any such algorithm relies upon (and in fact implies) a non-constructive result
from the Graph Minors project of Robertson and Seymour. Therefore, this
fact does not make Theorem 1.2 redundant, as that result is constructive,
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in the sense that the algorithms it describes could be implemented without
too much difficulty.

4.2. Oracle algorithms. Up to this point we have assumed that all binary
matroids are represented by matrices over GF(2). In this section we will
assume that a matroid M (not necessarily binary) is represented by an
oracle. Suppose that M is a subcollection of the family {M(K3,3), M(K5),
M∗(K3,3), M∗(K5)} and that M contains either M(K3,3) or M∗(K3,3). If
we wish to decide whether M has a minor in M, then we can construct a
partial representation A of M , and run the algorithm of Theorem 1.2 upon
the binary matroid M [Ir(M)|A]. If M is a binary matroid then this algorithm
will return the correct answer. However if M is non-binary then we cannot
be certain that this is the case. If the algorithm indicates that M [Ir(M)|A]
has a minor in M then all we can be sure of is that either M has a minor in
M, or M is non-binary. Similarly, if the algorithm decides that M [Ir(M)|A]
has no minor in M then either M has no minor in M, or M is non-binary.
Thus we can decide whether M has a minor in M∪ {U2,4}, but we cannot
decide which of these matroids it has as a minor.

In some sense this is the best we can hope for, as a famous example of
Seymour’s [19] shows: For r ≥ 3 let {e1, . . . , er} be the standard basis of the
vector space over GF(2) with dimension r. Let d be the sum of e1, . . . , er,
and for 1 ≤ i ≤ r let di be the sum of d and ei. Let Nr be the binary matroid
represented by the set {e1, . . . , er, d1, . . . , dr}. If H is a subset of E(Nr) such
that |H ∩ {d1, . . . , dr}| is odd and |H ∩ {ei, di}| = 1 for 1 ≤ i ≤ r, then H
is a circuit-hyperplane of Nr. Let Nr(H) be the matroid obtained from Nr

by relaxing H. It is not difficult to prove by induction on r that Nr has no
minor in the set {M(K3,3), M(K5), M∗(K3,3), M∗(K5)}. Moreover, Nr(H)
is non-binary. In the worst case, an oracle algorithm will have to check each
of the 2r−1 candidate sets H to decide whether the matroid it is considering
is isomorphic to Nr, or Nr(H). Therefore we have the following result.

Proposition 4.20. Let M be a subset of {M(K3,3), M(K5), M∗(K3,3),
M∗(K5)}. There is no polynomial function p such that one can decide
whether a matroid M belongs to EX (M) using at most p(|E(M)|) calls to
an oracle.

We note that the binary matroid Nr contains many 3-separations, and
is therefore far from being internally 4-connected. If we restrict our atten-
tion to internally 4-connected matroids the situation changes dramatically.
Seymour [19] shows that there is a polynomial p and an algorithm which,
given a matroid M (not necessarily binary), will either output a graph G
such that M = M(G), or decide that no such graph exists, using at most
p(|E(M)|) calls to an oracle. Using a similar strategy to that in the proof of
Proposition 4.15 we can show that it is possible to decide whether a matroid
M is isomorphic to a Möbius matroid, using only a polynomial number of
calls to an oracle. Since it is obviously possible to decide whether a matroid
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M is isomorphic to one of a finite number of sporadic matroids using a con-
stant number of oracle calls, the next proposition follows from the results of
Section 3.

Proposition 4.21. Let M be a subset of {M(K3,3), M(K5), M∗(K3,3),
M∗(K5)} that contains either M(K3,3) or M∗(K3,3). There is a polynomial
function p such that one can decide whether an internally 4-connected ma-
troid M belongs to EX (M), using at most p(|E(M)|) calls to an oracle.

5. Maximum-sized binary matroids with no M(K3,3)

Suppose that M is a family of matroids. We say that M ∈ M is a
maximum-sized member of M if M is simple, and whenever M ′ ∈ M is a
simple matroid with the same rank as M , then |E(M ′)| ≤ |E(M)|.

Kung [10] investigated the maximum-sized members of EX (M(K3,3)), and
showed that such a matroid M satisfies |E(M)| ≤ 10r(M). We complete this
programme by characterizing the maximum-sized members of EX (M(K3,3)).
As a consequence, we show that if M is a rank-r maximum-sized member of
EX (M(K3,3)), then |E(M)| = 14r/3−α(r), where α(r) takes on the values
7, 11/3, and 19/3 according to the residue of r modulo 3.

Suppose that M ∈ EX (M(K3,3)) and that T is a triangle of M . We say
that T is an allowable triangle of M if ∆T (M) has no M(K3,3)-minor.

Lemma 5.1. Suppose that M is a 3-connected member of EX (M(K3,3)). If
either

(i) M has an allowable triangle; or,
(ii) r(M) > 4,

then |E(M)| ≤ 4r(M)− 5.

Proof. Let M be a 3-connected member of EX (M(K3,3)). Let r = r(M).
Note that if M satisfies statement (i) or (ii), then r ≥ 2. Moreover, if r = 2,
then |E(M)| = 3, so |E(M)| ≤ 4r − 5. Henceforth we assume that r ≥ 3.
Suppose that M is internally 4-connected. Theorem 1.1 implies that M is
either cographic, isomorphic to a Möbius matroid, or isomorphic to one of
the sporadic matroids in Theorem 1.1.

Suppose that M is a sporadic matroid. There are no sporadic matroids
with rank 3. If r > 4 then it is easily confirmed that |E(M)| ≤ 4r − 5. If
r = 4 and M has an allowable triangle, then |E(M)| ≤ 11 (see Appendix C
of [12]), and therefore |E(M)| ≤ 4r − 5.

Suppose that M is a Möbius matroid. A rank-r triangular Möbius matroid
contains 3r − 2 elements, and a rank-r triadic Möbius matroid has 2r − 1
elements. Since r ≥ 3 it follows that |E(M)| ≤ 4r − 5.

Now assume that M is cographic. Suppose that G is a graph such that
M = M∗(G). As r ≥ 3, it follows that the minimum degree of G is at least
three, because M is internally 4-connected. By splitting vertices, we can see
that |E(M)| is no greater than the number of elements in a rank-r cographic
matroid corresponding to a graph that is regular with degree three. Such
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a cographic matroid contains exactly 3r − 3 elements. It again follows that
|E(M)| ≤ 4r − 5.

Now we assume that the lemma is false, and that M is a counterexample
with the smallest possible rank. The previous paragraphs imply that M is
not internally 4-connected.

Let (X1, X2) be an exact 3-separation of M such that |Xi| ≥ 4 for i = 1, 2.
By Proposition 2.12 there are binary matroids M1 and M2 on the ground
sets X1 ∪ T and X2 ∪ T respectively such that T ∩ (X1 ∪ X2) = ∅ and
M = M1 ⊕3 M2. Assume that the ranks of M1 and M2 are r1 and r2

respectively. Since the 3-sum M1 ⊕3 M2 is defined, it follows that T does
not contain a cocircuit in either M1 or M2. Thus ri = rM (Xi) for i = 1, 2.
Therefore r1 +r2−r = 2. Because |E(Mi)| ≥ 7 and every parallel pair of Mi

involves a member of T it follows that ri > 2 for i = 1, 2. Hence r1, r2 < r.
Proposition 2.14 says that si(M1) and si(M2) are 3-connected. Moreover Mi

(and hence si(Mi)) has no M(K3,3)-minor for i = 1, 2 by Proposition 2.13.
Therefore we can apply the lemma to si(M1) and si(M2) by our inductive
assumption.

If T is not an allowable triangle of Mi then ∆T (Mi) has an M(K3,3)-minor,
and therefore M has an M(K3,3)-minor by Proposition 2.15, a contradiction.
Therefore T is an allowable triangle in both M1 and M2. For i = 1, 2 let
ni = |E(si(Mi))|. As the lemma holds for si(M1) and si(M2) we deduce that
ni ≤ 4ri − 5 for i = 1, 2.

The only parallel classes of Mi have size two, and contain an element of
T . Note that no element in T can be in a parallel pair in both M1 and M2,
for that would imply that M = M1 ⊕3 M2 has a parallel pair. Let m be
the number of elements in T that are in a parallel pair in either M1 or M2.
Then

|E(M)| = n1 + n2 −m− 2(3−m) = n1 + n2 + m− 6

≤ (4r1 − 5) + (4r2 − 5)− 3 = 4(r1 + r2 − 2)− 5 = 4r − 5.

Therefore M is not a counterexample to the lemma. This contradiction
completes the proof. �

For integers r ≥ 2 we recursively define the classes of rank-r matroids Pr

as follows:

P2 = {PG(1, 2)}, P3 = {PG(2, 2)}, P4 = {PG(3, 2)}
and for r > 4 we define Pr to be the set

{P (M, PG(3, 2)) | M ∈ Pr−3},
where P (M, PG(3, 2)) is the parallel connection of M and PG(3, 2) (see [15,
Section 7.1]) along an arbitrary basepoint. It is well known that parallel con-
nections can be expressed as 2-sums. It follows that if M0 is a 3-connected
binary matroid, and neither M1 nor M2 has M0 as a minor, the parallel con-
nection of M1 and M2 does not have an M0-minor ([12, Proposition 2.20]).
The next result follows from this fact and induction.
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Proposition 5.2. Let r ≥ 2 be an integer, and suppose that M ∈ Pr. Then
M has no M(K3,3)-minor.

Note that for each r ≥ 2 the matroids in Pr have the same size. Let f(r)
denote this common size. The precise value of f(r) depends on the residue
class of r modulo 3, as shown in Table 1.

Rank r Size f(r)
r = 3k 14k − 7 14r/3− 7

r = 3k + 1 14k + 1 14r/3− 11/3
r = 3k + 2 14k + 3 14r/3− 19/3

Table 1. The size of matroids in Pr.

Define α(r) = 14r/3− f(r) so that each member of Pr has 14r/3− α(r)
elements and α(r) depends only on the value of r modulo 3.

Now we can prove the main result of this section.

Theorem 5.3. A matroid M with rank r ≥ 2 is a maximum-sized member
of EX (M(K3,3)) if and only if M ∈ Pr.

Proof. We prove the “only if” direction first. Assume that M is a maximum-
sized member of EX (M(K3,3)) and that M does not belong to Pr for any
r ≥ 2. Let r = r(M) and assume that no such counterexample exists with
rank less than r. The theorem is easily seen to be true for matroids of rank
at most four, so r > 4. Obviously M is at least as large as a member of Pr,
so |E(M)| ≥ 14r/3−7. As r > 4 we see that 14r/3−7 > 4r−5, so M is not
3-connected by Lemma 5.1. Hence there is an exact k-separation (X1, X2)
of M , where k < 3.

If k = 1 then M = M1 ⊕M2, where Mi = M |Xi for i = 1, 2. Neither M1

nor M2 has an M(K3,3)-minor, and certainly both are simple. Suppose that
ri = r(Mi) for i = 1, 2, so that r = r1 + r2. Since M is simple, ri > 0 and
hence ri < r for i = 1, 2. Therefore we can apply our inductive hypothesis
and conclude that |E(Mi)| ≤ 14ri/3− α(ri) for i = 1, 2. Now

|E(M)| = |E(M1)|+ |E(M2)| ≤ 14r/3− (α(r1) + α(r2)).

But α(r1)+α(r2) > 7, regardless of the residue classes of r1 and r2 modulo 3,
so |E(M)| < 14r/3− 7, contradicting our earlier conclusion.

Now we can assume that M is connected, and that k = 2. Then Proposi-
tion 2.11 says that M = M1⊕2 M2, where the ground set of Mi is Xi ∪ p for
i = 1, 2, and p /∈ X1 ∪X2. Let ri = r(Mi) for i = 1, 2. As p is not a loop
or coloop in M1 or M2 it follows from Proposition 2.3 that ri = rM (Xi) for
i = 1, 2. Thus r1 + r2 − r = 1. As M has no parallel pairs it follows that
r1, r2 ≥ 2. Therefore r1, r2 < r. Proposition 2.3 also implies that neither
M1 nor M2 has an M(K3,3)-minor.

The fact that M has no parallel pairs means that for all i ∈ {1, 2}, either
Mi is simple or Mi contains no loops and exactly one parallel pair, which
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contains p. Suppose that both M1 and M2 are simple. Let M ′
1 be obtained

by adding an element in parallel to p. Then M ′
1 ⊕2 M2 is simple, and has

no M(K3,3)-minor by [12, Proposition 2.20]. Moreover M ′
1 ⊕2 M2 has more

elements than M = M1 ⊕2 M2, a contradiction. Therefore either M1 or M2

contains a single parallel pair, and this pair contains p. It cannot be the
case that both M1 and M2 contain a parallel pair, for then M would have a
parallel pair.

Suppose that M1 is simple, and that M ′ is a simple rank-r1 matroid in
EX (M(K3,3)) such that |E(M ′)| > |E(M1)|. Let us assume that E(M ′) ∩
E(M2) = {p}. We can also assume that p is not a coloop of M ′, as M ′

is not isomorphic to Ur1, r1 . Therefore M ′ ⊕2 M2 is defined, and has no
M(K3,3)-minor by [12, Proposition 2.20]. Moreover M ′ ⊕2 M2 is simple
and |E(M ′ ⊕2 M2)| > |E(M)|, a contradiction. Next we suppose that M1

contains a single parallel pair. Assume that M ′ ∈ EX (M(K3,3)) is a simple
rank-r1 matroid and that |E(M ′)| > |E(si(M1))|. We can assume that
the 2-sum of M ′ and M2 along the basepoint p is defined. Let M ′′ be
the matroid obtained from M ′ by adding p′ in parallel to p. From our
earlier discussion we see that p is not in a parallel pair in M2. It follows
that M ′′ ⊕2 M2 is simple. Moreover M ′′ ⊕2 M2 has no M(K3,3)-minor.
Furthermore M ′′ ⊕2 M2 contains strictly more elements than M . In either
case we have a contradiction, so si(M1) is a maximum-sized member of
EX (M(K3,3)). By the same argument, so is si(M2).

The inductive hypothesis implies that si(Mi) ∈ Pri for i = 1, 2. We have
already noted that p is not in a parallel pair in both M1 and M2. From this
we can deduce that |E(M)| ≤ |E(si(M1))|+ |E(si(M2))|− 1. As M must be
at least as large as a member of Pr we deduce that

14r/3− α(r) ≤ |E(si(M1))|+ |E(si(M2))| − 1.

However, by our inductive assumption we see that |E(si(Mi))| ≤ 14ri/3 −
α(ri) for i = 1, 2. Therefore

14r/3− α(r) ≤ 14/3(r1 + r2)− (α(r1) + α(r2))− 1

= 14/3(r + 1)− (α(r1) + α(r2))− 1.

This implies that α(r1) + α(r2) − α(r) ≤ 11/3. Combining this with the
fact that r1 + r2 = r + 1, and examining the cases, we see that either r1

or r2 must be congruent to 1 modulo 3. Without loss of generality we will
assume that r1 ≡ 1 (mod 3). Since si(M1) ∈ Pr1 this means that si(M1)
is obtained by taking the parallel connection of a collection of isomorphic
copies of PG(3, 2). It follows easily from Proposition 2.4 that the parallel
connection is an associative operation, and M is the parallel connection of
si(M1) and a matroid from Pr2 . Therefore M belongs to Pr, a contradiction.

To prove the other direction of the theorem we note that if M ∈ Pr

for some r ≥ 2 then M is simple and M ∈ EX (M(K3,3)) by Proposi-
tion 5.2. By the first part of the proof any maximum-sized rank-r member
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of EX (M(K3,3)) has the same size as M , and therefore M itself is maximum-
sized. This completes the proof. �

6. Critical exponents

Suppose that M is a loopless GF(q)-representable matroid with rank r.
Then M can be considered as a multiset of points in the projective space
PG(r − 1, q). The critical exponent of M over q is the smallest integer k
such that there is a set of hyperplanes H1, . . . ,Hk in PG(r − 1, q) with the
property that H1∩ · · · ∩Hk contains no points of E(M). Finding c(M ; q) is
known as the critical problem (see Kung [11] for an exposition). It is easy
to see that if e is an element of the matroid M , then c(M\e; q) ≤ c(M ; q),
for all possible q.

Kung [10] looked at the critical exponent over GF(2) of binary matroids
with no M(K3,3)-minor. He showed that if M ∈ EX (M(K3,3)) is simple
then c(M ; 2) ≤ 10. In this section we show that in fact c(M ; 2) ≤ 4,
and that this bound can not be improved. In particular, we show that if
M ∈ EX (M(K3,3)) is loopless and c(M ; 2) = 4, then M has a 3-connected
component isomorphic to PG(3, 2).

The critical exponent can be expressed in terms of the characteristic poly-
nomial. Suppose that M is a matroid on the ground set E. Then the
characteristic polynomial of M , denoted χ(M ; t), is defined by

χ(M ; t) =
∑
A⊆E

(−1)|A|tr(M)−r(A).

Suppose that M is a loopless GF(q)-representable matroid. Then
χ(M ; qk) ≥ 0 for every positive integer k, and c(M ; q) is the least positive
integer k such that χ(M ; qk) is positive. It is known that if G is a graph,
then the flow polynomial of G, denoted F (G; t), is equal to χ(M∗(G); t).

Lemma 6.1. Suppose that M is an internally 4-connected member of
EX (M(K3,3)). Then c(M ; 2) ≤ 4, and if c(M ; 2) = 4, then M is iso-
morphic to PG(3, 2).

Proof. It is easy to see that PG(3, 2) has critical exponent 4 over GF(2)
(see [11, Section 8.1]).

Assume that M is an internally 4-connected member of EX (M(K3,3))
other than PG(3, 2). Suppose that M = M∗(G) is a cographic matroid.
Jaeger’s 8-flow theorem [8] shows that χ(M ; 8) = F (G; 8) > 0, and hence
c(M ; 2) ≤ 3. Now suppose that M ∼= ∆r, a triangular Möbius matroid.
Consider the GF(2)-representation of ∆r discussed in Section 2.5. Suppose
that each point of PG(r − 1, 2) corresponds to a vector (x1, . . . , xr). Let
H1, H2, and H3 be hyperplanes of PG(r− 1, 2) defined, respectively, by the
equations xr = 0, x1 + · · · + xr = 0, and either x1 + x3 + · · · + xr−1 = 0
or x1 + x3 + · · · + xr−2 = 0, depending on whether r is even or odd. It is
easy to see that no point of ∆r is contained in all of H1, H2, and H3, so
c(M ; 2) ≤ 3.



EXCLUDING KURATOWSKI GRAPHS 35

Suppose that M ∼= Υr, a triadic Möbius matroid. Consider the represen-
tation of Υr in Section 2.5. No point of Υr is contained in the hyperplane
defined by x1 + · · ·+ xr = 0, so c(M ; 2) ≤ 1.

Finally we suppose that M is isomorphic to one of the sporadic matroids
in Theorem 1.1. The largest such matroid with rank 4 is PG(3, 2), and it
known that every proper minor of this matroid has critical exponent at most
three over GF(2) [11, Section 8.1]. Thus we will suppose that r(M) ≥ 5. The
sporadic matroid T12 has rank 6. By examining the matrix representation
of T12 in [12, Appendix B], we see that no point of T12 is contained in the
hyperplane defined by x1 + · · ·+ x6 = 0. Thus c(T12; 2) ≤ 1. Let A be the
matrix in [12, Appendix B] such that [I5|A] represents the rank-5 sporadic
matroid Ma

5,12. If

Ha
5,12 =

 1 1 0 0 0
1 0 1 0 1
1 1 1 1 1


then Ha

5,12[I5|A] contains no zero columns. This means that no point of
Ma

5,12 is contained in all three of the hyperplanes defined by x1 + x2 = 0,
x1 + x3 + x5 = 0, and x1 + x2 + x3 + x4 + x5 = 0. Thus c(Ma

5,12; 2) ≤ 3.
In the same way we can show that M5,13, M6,13, M7,15, M9,18, and M11,21

all have critical exponent at most three by examining the matrices

H5,13 =

 1 0 0 0 1
1 0 1 0 1
1 1 1 1 0

 H6,13 =

 0 1 0 0 0 0
1 0 0 1 1 0
1 1 1 1 1 1


H7,15 =

[
1 0 1 0 1 0 1
1 1 1 1 1 1 1

]
H9,18 =

 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1


and

H11,21 =

 0 0 0 0 0 0 1 0 0 1 0
1 0 1 0 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1


As every sporadic matroid in Theorem 1.1 can be produced from one

of PG(3, 2), Ma
5,12, M5,13, T12, M6,13, M7,15, M9,18, or M11,21 by deleting

elements, the proof is complete. �

Next we come to the main result of this section.

Theorem 6.2. Suppose that M ∈ EX (M(K3,3)) is a loopless matroid. Then
c(M ; 2) ≤ 4, and if c(M ; 2) = 4, then either

(i) M is isomorphic to PG(3, 2); or,
(ii) M can be expressed as the 1- or 2-sum of M1 and M2, where M1, M2

belong to EX (M(K3,3)), and either c(M1; 2) = 4 or c(M2; 2) = 4.

Proof. Suppose that M is a minor-minimal counterexample to the theorem.
Lemma 6.1 shows that M cannot be internally 4-connected. Assume that
M is not connected, so that M can be expressed as M1 ⊕M2. Clearly M1
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and M2 are loopless members of EX (M(K3,3)). It is well known, and easy to
verify, that χ(M ; t) = χ(M1; t)χ(M2; t). If c(M ; 2) > 4 then χ(M ; 16) = 0,
implying that χ(Mi; 16) = 0 for some i ∈ {1, 2}. But Mi is a proper minor
of M , so we have a contradiction to minimality. Therefore we suppose that
c(M ; 2) = 4, so that χ(M ; 8) = 0. This implies that c(Mi; 2) = 4 for some
i ∈ {1, 2}, and M satisfies statement (ii).

Now we must assume that M is connected. Suppose that M can be
expressed as the 2-sum of M1 and M2 along the basepoint p, by Proposi-
tion 2.11. Again M1 and M2 are loopless members of EX (M(K3,3)). Walton
and Welsh [24, (7)] note that the following relation holds:

(6) χ(M ; t) =
χ(M1; t)χ(M2; t)

t− 1
+ χ(M1/p; t)χ(M2/p; t).

Since M1 and M2 are isomorphic to minors of M it follows that χ(Mi; 16) >
0 for i = 1, 2. Now (6) implies that χ(M ; 16) > 0, so c(M ; 2) ≤ 4. Therefore
it must be the case that c(M ; 2) = 4, so that χ(M ; 8) = 0. Since χ(M1; 8) ≥
0 and χ(M2; 8) ≥ 0 it follows that either χ(M1; 8) = 0 or χ(M2; 8) = 0.
Then M satisfies statement (ii) of the theorem, so we have a contradiction.

Now we must assume that M is 3-connected, so M = M1 ⊕3 M2 for
some matroids M1 and M2. Proposition 2.13 implies that M1 and M2 are
isomorphic to proper minors of M . Moreover M1 and M2 are loopless, and
both si(M1) and si(M2) are 3-connected by Proposition 2.14.

Suppose that the 3-sum of M1 and M2 is along the triangle T , where
T = {a, b, c}. The following equality is from Walton and Welsh [24].

(7) χ(M ; t) =
χ(M1; t)χ(M2; t)

(t− 1)(t− 2)
+ χ(M\a\b/c; t)

+ χ(M\a/b; t) + χ(M/a; t).

All the matroids M1, M2, M\a\b/c, M\a/b, and M/a have critical expo-
nent at most four, so the characteristic polynomial of each of these matroids,
evaluated at 16, produces a positive answer. Therefore χ(M ; 16) > 0 and
c(M ; 2) ≤ 4.

It must be the case that c(M ; 2) = 4, so that χ(M ; 8) = 0. Then the
terms of the sum in (7) must be zero at the point t = 8. In particular, we
can assume by relabeling that χ(M1; 8) = 0 and c(M1; 2) = 4.

The critical exponent of si(M1) is precisely the critical exponent of M1.
Since si(M1) is 3-connected and obeys the theorem, it follows that si(M1) is
isomorphic to PG(3, 2). Now PG(3, 2) has no allowable triangles (see [12,
Appendix C]). Therefore ∆T (si(M1)) has an M(K3,3)-minor, so ∆T (M1) has
an M(K3,3)-minor. Proposition 2.15 implies that ∆T (M1) is isomorphic to
a minor of M , so M has an M(K3,3)-minor. This contradiction completes
the proof. �
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