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Abstract

For this work, I have developed an interactive path tracer with first-class
support for physically-based rendering of translucent materials. The soft-
ware implements a fully GPU-driven raytracing pipeline with DirectX Ray-
tracing, synthesising several compute-based algorithms to render non-
local subsurface scattering effects based on a blue noise surface sampling
model[2, 8, 9]. The pipeline is easily extendable with additional material
models and exposes a clean API, hiding complex device interfacing and
resource management while mirroring low-level hardware raytracing fea-
tures. In this thesis, I will first review the relevant theoretical background
and provide an overview of DirectX 12 and DirectX Raytracing. I then
provide a detailed description of the raytracing system and its implemen-
tation details. Finally, I share my results demonstrating the wide range of
material properties and appearances that are supported by the software
and give ideas for its future development.
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Chapter 1
Introduction

Accurately rendering translucent materials is a computationally challeng-
ing problem that is important in a wide range of industries including
entertainment, computer-aided design, and biomedical imaging. While
approximate and simplifying solutions have been developed[3], faithful
rendering of translucent materials is typically left to offline, CPU-bound
path tracers that can simulate global illumination[7, 12]. The advent of
hardware-accelerated raytracing, and its continued development to date,
promises to buck this trend with a new generation of photorealistic ren-
derers, leveraging the new hardware and APIs to push physically-based
rendering closer to real-time performance.

DirectX Raytracing was announced in early 2018, heralding the launch
of Nvidia’s RTX series and their Turing architecture later the same year.
Turing introduced additional specialised processing units to the dye, in-
cluding RTX cores for raytracing and tensor cores for Al workloads, which
have since become a standard inclusion on Nvidia’s high-end GPUs. In
2020 AMD followed suit with the inclusion of specialised raytracing cores
with the RDNA 2 architecture and subsequent architectures. At the same
time, Vulkan standardised its own raytracing extension, and in 2022 Apple
did the same with their Metal API. RNDA 2 would also become the chosen

architecture for the most recent Playstation and Xbox consoles, unifying
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2 CHAPTER 1. INTRODUCTION

the technology across all vendors and platforms.

While support has grown across the board, adoption of the technology
remains relatively narrow. Usage of raytracing in modern video games
is typically only csupplementary to rasterisation, while Nvidia continues
to market the technology with RTX mods and re-releases for retro games:
Quake II RTX (2019), Portal RTX (2022), the upcoming Half-Life 2 RTX utilis-
ing their Al-powered RTX Remix modding toolkit, and of course, Minecraft
RTX (2020).

While these demos have become increasingly impressive, there has
been relatively little application of the technology for GPU-based render-
ers. Mitsuba 3[7] is able to leverage the hardware through its OptiX back-
end, a CUDA-based raytracing framework that received support for RTX.
Another Nvidia demo Marbles at Night (2020) is still perhaps the most im-
pressive use of the hardware for path tracing; a physics-based game with
real-time global illumination and physically-based materials.

While currently there has not been a true “killer-app” for hardware ray-
tracing, it is clear that the technology is here to stay. As consumer adoption
slowly increases and technical advances are made, it is hard to imagine a
future where real-time raytracing does not become a staple of the industry.
In this work, I explore how this technology can be used at the lowest level
to build an interactive, extendable raytracing system, and how it can be

leveraged to advance the rendering of translucent materials.



Chapter 2
Theoretical Background

Physically-based rendering (PBR) is an approach to computer graphics
that began to develop in the 1980s. In essence, physically-based approaches
seek to faithfully recreate the visual world by studying and applying the
physical laws of light. The earliest steps into PBR were made over several
years with foundational research by Whitted[13], Cook, Torrance[4], and
Kajiya[10]. From this work and that of many others has emerged a formal-
ization of the language and mathematics of rendering, which now serves
as the backbone for physically based rendering.

In the first section, this chapter will first review the bread and butter of
PBR, before diving into the theory and problems of volumetric rendering

and subsurface scattering in the second.

2.1 Physically-Based Rendering

Rendering is fundamentally about understanding how light interacts with
the world around us - we only see things as they affect light travelling into
our vision. The huge variety of visual phenomena reveals its complexity:
Pigments take on the colours of light they reflect; electric currents cause
gasses in tubes to emit their own. Mirrors show us the world behind us

and glasses shape it to fit our retinas. Our faces can flush from embar-
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4 CHAPTER 2. THEORETICAL BACKGROUND

rassment or go pale with shock. Metals lustre and silks shine. Water in
a glass projects its ripples onto the ceiling above and table below. Tiny
raindrops spread sunlight into a rainbow; the mighty paua fracture it with
their shells.

There is an ever-present, endlessly complex interplay between light
and the world around us, but a single optical phenomenon colours and
shapes our perception more than any other: reflection. When light inter-
acts with opaque objects, it is either absorbed and converted into heat, or
reflected, temporarily transferring its energy into electrons before being
re-emitted. The colour of the object is determined by what wavelengths
of light the material reflects, while the visual texture of the object is de-
termined by the directional distribution of these reflections. Materials
with rough, matte surfaces scatter incoming light randomly in all direc-
tions, while smooth, shiny materials reflect light specifically at the angle
it was incident in. Most materials in the real world exhibit varying de-
grees of both of these properties; modelling and integrating this scattering

behaviour is the basis of physically-based rendering.

211 The Rendering Equation and BRDF

The rendering equation[10] provides a general description of how light is
reflected by opaque objects towards the viewer. It defines a function for
L,, the light reaching the observer along unit vector w,, given a point on

the surface p.

LO(pawO) = Le(p7w0> + / f(pvwmwi)[’i(pawi)‘wi ’ n‘dwi (21)

H2 (n)
By evaluating the rendering equation for all points facing the viewer,
we can render an image of an entire scene; hence the name.
Light is measured with a quantity called radiance, denoted by the
subscripted L symbols, defined as the radiative power flowing along a

straight line in free space. The first term in the definition, L., denotes ra-
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diance emitted by the surface from point p towards the observer along w,.
Few materials are emissive in general, so with the exception of lights, this
term will be zero in all directions for most objects in a scene.

The integral term in the definition calculates how light is scattered to-
wards the observer. The integral takes incident radiance (Z;) from all di-
rections (w;), on the hemisphere (H?(n)), then sums their contributions via
scattering towards the observer (w,). The differential contribution of L;
scattered towards w, is given by its product with a cosine term, |w; - n|, and
a distribution function, f(p, w,,w;).

The cosine of w; with the surface normal (n) gives its differential pro-
jected area on the surface. The product of this area and L; yields a dif-
ferential irradiance quantity, denoted dF, defined as the radiative power
density on a surface.

The function f is known as the bidrectional reflectance distribution
function (BRDF) and completely describes the reflective and scattering
properties of opaque materials. The BRDF is parametrized under p, w,,
and w;, and relates the differential irradiance incoming from w; to differ-
ential radiance outgoing along w,. In other words, it gives the directional

distribution of %= over each point on the surface of a material.

2.1.2 Numerical Solutions

The complexity of the rendering equation makes it impossible to solve an-
alytically for anything bar the most contrived cases. Reality is comprised
of detailed objects with complex geometry and reflection functions, so ro-
bust numerical methods must be employed to even begin to attempt pho-

torealistic rendering.

Whitted Raytracing

The raytracing algorithm is the basis for the solution to almost all render-
ing problems. First proposed by Whitted[13], the algorithm traces back-
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wards along the path taken by light to reach the observer. To render an
image, we need to calculate the outgoing radiance from all camera-facing
surfaces arriving at the camera. In general, most of the light in the scene is
scattered outside of the observer’s field of view; The key idea of raytrac-
ing was to compute only the light that is relevant to the image by starting
from the observer’s position and tracing backwards along the light’s path,
rather than forwards out of the scene.

For each pixel (or sample) in the image, calculate the direction of light
reaching it through the camera lens. The primary ray is defined as the ray
originating at the position of the camera and pointing in the opposite di-
rection to this. Using the model of a pinhole camera, each sample in the
image corresponds to a unique primary ray, whose direction is substituted
as —w, into the rendering equation. The algorithm then steps outwards
along the primary rays into the scene, finding the nearest intersecting sur-
faces. The rendering equation is then evaluated at these points of intersec-
tion, given as p, with L, determining the resulting colour of the samples.

Whitted’s initial implementation of raytracing used the much older
Blinn-Phong illumination model[1], and was only capable of consider-
ing direct illumination from a fixed number of light sources with simple,
isotropic BRDFs. However, it was remarkable at the time for its ability to
accurately render refractions and mirror reflections by recursively tracing
secondary rays along these altered light paths. This style of renderer is
now known as a Whitted raytracer.

Path Tracing

While Whitted’s original algorithm only considered a discrete set of light
sources, it naturally leads to a recursive algorithm that accounts for illu-
mination from all objects in a scene. Despite most light in a typical scene
originating from a small set of emissive sources, a significant amount can
be transmitted between opaque surfaces. This can be expressed as a recur-

sive relation between L; and L, in the rendering equation; for all points p
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and p’ that are facing each other:

Li(p,w) = Lo(p’, —w), where p'=p+tw, t>0 (2.2)

This indirect illumination leads to a recursive process known as dif-
fuse interreflection where light scattered by one surface illuminates oth-
ers. This is apparent in the rendering equation; because w; is integrated
over the entire hemisphere, any set of surfaces that are facing each other
will have L; terms that depend on L, terms of the others.

This process accounts for a large proportion of visible lighting effects.
It is the main reason why a single lamp can light an entire room and
why dark corners appear to expand gradually, rather than exist behind
an abrupt boundary. Deciding what to paint the walls really does matter,
because they colour the lighting conditions of everything they surround.

Path tracing, first introduced by Kajiya[10], implements diffuse inter-
reflection by modifying the raytracing algorithm to sample incident ra-
diance from indirect light paths. Rather than integrating L; from direct
sources only, it evaluates the rendering equation by randomly sampling
w; over the hemisphere. These discrete samples are then used to generate
secondary rays, with origin p and direction w;, which recursively invoke
the raytracing procedure to calculate further samples of L;. This gives a
Monte-Carlo solution to the rendering equation:

'j'n|7 wiNHZ(n)

1

ZIH

Lo(p7wo) ~ pawo

; P, wo, w!) L; (p,w?)

(2.3)

Secondary rays are recursively sampled until they hit an emissive light
source or reach a fixed depth limit. Each level of indirection has dimin-
ishing contributions to the final result, so the depth limit is generally kept
low due its exponential effect on computational complexity. For a single
light path with D bounces, the differential contribution to L, is given by

the product of BRDF and cosine terms and the L. term of the emissive
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source:

D
PL (") = (H F (0, 1) 1 \) Lo (P, —uP)

- (2.4)

Path tracing remains the gold standard for rendering. It is generally
considered the most faithful solution to the rendering equation as it has
unbiased convergence and no theoretical upper bound on accuracy. How-
ever, its high computational complexity and low entropy per sample make
it impractical for most applications and is seldom used without heuristic

modifications.

2.2 Rendering of Translucent Materials

So far we have discussed rendering opaque materials using the rendering
equation with the BRDF. The BRDF model assumes that light is only re-
flected, absorbed, or transmitted locally, at surface boundaries, and flows
freely through space otherwise. However, participating media such as
smoke and translucent materials such as marble or skin break this as-
sumption. These materials partially transmit radiance while volumetri-
cally scattering and absorbing it. The BRDF is unsuitable because it cannot
account for the non-local effects of volumetric scattering, where radiance
can be scattered in arbitrary directions at all points along the ray. Volu-
metric scattering contributes significantly to the appearance of translucent
materials, so other methods must be used to render them accurately.
While volumetric scattering is functionally the same in both participat-
ing media and translucent materials, they warrant different approaches
to their implementation. Specifically, subsurface scattering refers to vol-
umetric scattering below the surface of a translucent material, and is the
primary focus of this research; we will not consider participating media.

We will also not consider emissive volumetric materials such as plasma.
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2.2.1 Volume Rendering

There are two major volumetric effects that need to be considered for

translucent materials: absorption and scattering.

Absorption refers to radiation that is absorbed by particles in the medium
and converted into another form of energy such as heat. This reduces the
radiant energy transmitted through the medium, visually darkening it and
casting shadows when thick enough. Absorption in a material is quanti-
fied by the absorption cross-section, o,(p,w), a function of position and
direction. It gives the proportion of radiance absorbed per unit distance
travelled along w through p.

Scattering refers to radiation that collides with particles in the medium
and is re-emitted in another direction. Similar to absorption, scattering is
quantified by the scattering cross-section, o,(p,w), the proportion of radi-
ance scattered per unit distanced travelled along w through p.

The direction that light is scattered in is probabilistic and is given by the
material’s phase function, p(p, w;, w,), which defines a normalized proba-
bility density function for each pair of incoming and outgoing light di-
rections. For many materials the phase function only depends on the an-
gle between the two directions — such materials are considered isotropic
as the scattering distribution is rotationally symmetric about the incident
ray. Scattering leads to two distinct visual effects: out-scattering and in-

scattering.

Out-scattering refers to attenuation in radiance due to being scattered
in other directions. Because absorption and scattering both exponentially
attenuate radiance along a ray, they are combined into a single term called
the extinction coefficient, oy = 0, + 0. This gives a single expression for
the rate of attenuation in radiance along differential length dt:

dLo(pu wo) = _Ut(p7wo)Li(p7 _wo)dt
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Integrating this quantity over the length of a ray and raising it gives
the total attenuation for a finite distance, 7, the beam transmittance.

Lo(p',wo) = To(p = p') Li(p, —wo)

where
Tr(p N p/) e fod at(p+tw,w)dt7 p/ =p + dw

T.(p — p + dw) can be thought of as a probability distribution of the dis-
tance d travelled by a photon before being absorbed or scattered by the
medium. For a uniform medium, the mean of this distribution 1/ gives
the material’s mean free path, which is a useful metric for determining
the overall scale of volumetric effects. Another useful metric, the albedo,
p = os/oy, gives the probability of scattering vs absorption. Light trav-
elling through a high albedo medium undergoes more scattering events
on average which contributes to a greater degree of diffuse illumination,
while low albedo media is characterised by low-degree scattering which

correlates more strongly with the material’s phase function.

In-scattering refers to the radiance that is added along a ray due to being
scattered from other directions. Every scattering event from radiance in
another direction has a probability, given by the phase function, to scatter
light in the direction in question and make a positive contribution to its
radiance. The differential change in outgoing radiance at p along w; due
to in-scattering can be calculated by integrating incident radiance and the

phase function over the sphere.

dLo(p,wo) = 05(p, wo) /2 Li(p,w")p(p, wi, wo) duw;
S

By taking the sum of these differential terms we get the radiative trans-
fer equation (RTE) which describes the transfer of radiance through a
volumetric medium. It is usually expressed with the advection operator,
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(w-V)L(p,w), which denotes the scalar gradient of radiance along the vec-
tor w at each point in the volume.

(@ V)L{p.) = =0 L(p, —) + 0u(,) | Llp.)plp. )’ + s(p.)

This is an integro-differential equation that can be solved to give the ra-
diance distribution L by substituting known light sources as boundary
conditions. The final term s, the source term, defines the distribution of
volumetric emission within the material. We are not considering volumet-
ric emission specifically, but it has been included here as it is commonly
used in light transport models even for materials that are not emissive.

Finally, we can integrate the scattering and absorption effects along the
ray to give an expression for the radiance transmitted to one point from
another.

Lo(pla Wo) == Tr(p — p/)Li(pa _WO)
t
+/ﬂ@ﬁmmmm/A@Mmm%mmm
0 g2

where p; = p + t'w,.

2.2.2 Analytical and Stochastic BSSRDF Methods

Evaluating the RTE is computationally very difficult due to the recursive
nature of the scattering process. Rather than using the RTE directly for
translucent objects, it is factored into an extension of the BRDE, the bidirec-
tional subsurface scattering and reflectance distribution function (BSS-
RDF). Subsurface scattering refers to the process of light entering the sur-
face of a translucent material at one point and being re-emitted due to
scattering at another. The BSSRDF expresses the relationship between the
incident and exitant light at these two points in terms of differential irra-
diance. It is used with a modified version of the rendering equation which
integrates over the surface of the object as well as the hemisphere of inci-
dent radiance.
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Lo(poawo) - Le(poawo) + / / S(poawoa piawi)Li(piaWi”Wi : n|dwidA
A JH2(n)

The BSSRDF essentially provides a solution to the RTE between the
points on the surface of a translucent material. This is useful in a ren-
dering context, but the RTE must still be solved to produce an expression
for the BSSRDF. This can be done either analytically by making simplify-
ing assumptions about the properties of the material to give a closed-form
approximation, or through Monte Carlo simulation. Most models, includ-
ing Monte Carlo, make the assumption that the BSSRDF depends only on
the distance between the two points. This is an important assumption as
it greatly reduces the function’s dimensionality, and is generally accurate
when the material properties have relatively low variance at the scale of
its mean free path.

Dipole Model

The dipole model for translucent materials is an analytical BSSRDF method
developed by Jensen et al. It is based on a diffusion approximation of mul-
tiple scattering: that is, repeated scattering events tend towards a uniform
diffusion process. Diffusion problems are well-studied and have readily
available closed-form solutions. The dipole model approximates the RTE
by modelling all light as coming from two point sources - one directly
above the surface and one directly below, hence dipole. The radiance dis-
tribution from these two points is described analytically using the diffu-
sion model; this is then used to calculate the BSSRDF as a ratio of incident
irradiance to exitant radiance.

While it is true that multiple scattering in most materials does tend
towards an isotropic distribution, the diffusion assumption loses relevance
for low-albedo media where primary, secondary, and low-order scattering

are the primary contributors to the visual appearance.



2.3. BLUE NOISE SURFACE SAMPLING 13

Monte Carlo

Monte-Carlo BSSRDF methods[5] enable the potential for a full simula-
tion of the behaviour of light at the photon level; their primary purpose
is to give as close to ground truth results as possible at the cost of time-
consuming simulation. They are best suited to materials that cannot be
easily modelled by analytical methods, such as biological tissues, which
contain complex microscopic substructures that interact with the light in
addition to typical volumetric effects. Monte Carlo methods simulate in-
dividual light paths travelling through the medium, allowing them to
account for the global subsurface scattering properties caused by micro-
scopic structures.

2.3 Blue Noise Surface Sampling

In addition to complex BSSRDF models, evaluating the BSSRDF render-
ing equation requires integrating irradiance over the surface of the object.
Like the BRDF rendering equation, the area integral in the BSSRDF ren-
dering equation is generally unsolvable and requires stochastic methods
to compute. This requires sampling the irradiance of random points on
the surface.

Unlike sampling the hemisphere which has a simple closed-form solu-
tion for all cases, surface sampling requires taking the entire surface into
consideration to give an unbiased distribution. This necessitates the pre-
computation of sample points for translucent media in a path tracer.

Blue noise is a specific family of point distributions that is specifically
useful for translucent materials. A set of blue noise samples is defined as
a random set of points that all satisfy a minimum distance requirement;
this removes higher frequencies in the signal and lowers variance in the
distribution. The algorithm of drawing random points until it meets the

distance constraints is known as Poisson disc sampling.
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Figure 2.1: Comparison of different surface sampling algorithms of 240
points. From left to right: Offset grid; Poisson disc "blue noise’; Uniform
random “white noise’. The offset grid and other latticed sampling algo-
rithms achieve near-uniform density but are prone to directional artifacts
due to their regular structure. White noise is statistically unbiased but pro-
duces highly oversampled clusers. Blue noise strikes a balance between
these approaches by mitigating global structural repetition while creating
a workable upper bound on local point density.
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Blue noise’s reliable uniformity makes it a pragmatic choice for in-
tegrating the BBSRDF; by setting radius between samples at some ratio
of the mean free path, guarantees can be made about the quality of the
sampling distribution everywhere on the surface. This avoids the issues
with the uniform random distribution, which produces highly oversam-

pled clusters and undersampled vacuums.
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Chapter 3

DirectX 12

DirectX 12 (DX12) is a suite of low-level, high-performance multimedia
APIs for Windows. Released in 2015, DX12’s major addition was the Di-
rect3D 12 graphics AP], a significantly lower-level and more performance-
focused API than its predecessor. Around the same time, Khronos’s Vulkan
and Apple’s Metal APIs were released, marking an industry shift away
from the high-level, state-based graphics APIs of OpenGL and Direct3D
11.

3.1 Direct3D 12

Direct3D 12 (D3D12) is a modern, high-performance graphics API simi-
lar to Khronos” Vulkan and Apple’s Metal. Compared to previous APIs
such as DirectX 11 and OpenGL, D3D12 exposes much lower level manip-
ulation of GPU resources and execution and combines rasterization and

general-purpose GPU programming into a single API.

3.1.1 Shaders

Shaders function similarly in D3D12 as with other graphics APIs. The ras-
terization pipeline has several optional and required programmable stages

17
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which are implemented with shaders.

Unlike OpenGL, shaders in D3D12 no longer need to be compiled by
the driver at runtime. DX12 includes a standalone shader compiler, DXC,
which compiles HLSL to a standardized bytecode format that is supported
on all DX12 platforms. This unifies the development of shaders and in-
cludes them in part of the regular application build process.

Vertex shaders and pixel shaders function as expected. The memory
layout and format of vertex attributes is specified in the pipeline state and
then passed to the vertex shader. The vertex shader outputs the final ver-
tex position and any data required for shading. The pixel shader inter-
polates any data passed from the vertex shader and outputs the final pixel
colours for the geometry. The rasterization pipeline is only very minimally

used in our raytracer as it is separated from the raytracing pipeline.

Compute shaders are well integrated with the D3D12 rasterization pipeline
as they can easily access all resources used by other shaders. Compute
shaders are launched in a 1, 2, or 3-dimensional grid; all grid cells are
assigned to threads on the GPU and are executed in parallel. Compute
shaders are able to perform a much broader set of operations than the
raster pipeline shaders and are able to manipulate resources directly on
the GPU without copying to system memory. This removes a major per-
formance bottleneck while leveraging the GPU’s parallel compute power
to greatly accelerate many general-purpose and certain rendering work-
loads that might otherwise be performed by the CPU.

3.1.2 Resource Management

D3D12 has a complex resource model to enable efficient management of
device memory, paging, and bandwidth. Resources are allocated on so-

called heaps in device-accessible memory, of which there are several types
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to reflect its expected usage patterns. Default heaps, as the name sug-
gests, provide the best performance characteristics for device reads and
writes, but are generally not accessible by the host. Upload heaps and
readback heaps are accessible by both the host and device, but are opti-
mized for transferring data from host to device, and device to host, respec-
tively. Custom heaps can also be created with a mixture of properties for
other specific usage scenarios.

Applications will typically prefer to work with data either in a default
heap (on the device) or in main system memory (on the host), and trans-
ferring data from one to the other will be implemented by first temporarily
writing to an upload or readback heap, with a subsequent copy from there
to its target location. This pattern is necessary for common procedures
such as uploading geometry and textures and returning data from com-
pute shaders.

D3D12 also allows the application to have fine-grained control of de-

vice virtual memory to enable efficient reuse of memory and streaming.

3.1.3 Resource Binding

D3D12 has a flexible but complex resource binding model, supporting a
range of data access patterns in shaders. Shaders specify their resource
requirements through objects called root signatures, and the resources are
supplied to the shader through descriptors.

Descriptors

Descriptors are opaque, tagged reference types that describe resources on
the GPU. In general, they hold, among other things, the type, dimensions,
format, and memory location of arbitrary device resources. There are sev-
eral types of descriptors, depending on the kind of resource they reference
and its required access patterns. Descriptors are created and manipulated
indirectly through the API, and form the basis for passing parameters to
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shaders and certain graphics commands.

Shader resource views (SRVs) provide read-only access to most resource

types including structured arrays (buffers), and textures.

Unordered access views (UAVs) are much the same as SRVs, but also
allow the shader to perform unordered writes to the resource. Unordered
writes are not synchronized between shader threads, although atomic op-
erations do exist for specific operations, depending on platform compati-
bility.

In particular, SRVs and UAVs enable hardware-accelerated access op-

erations for certain resource types, such as filtered texture fetches.

Constant buffer views (CBVs) provide read-only access to a limited set

of resource types, primarily structured or untyped data arrays.

Render target views (RTVs) and samplers are specialized descriptors
specifically for the rasterizer’s framebuffer and the sampling parameters
for texture resources, respectively. RTVs are not used for shader resource
binding and are instead supplied directly to the command list to receive

rasterization output.

Descriptors may be stored in objects called a descriptor heaps, which
essentially function as an array of descriptors that may be accessed by
shaders at runtime. The descriptor heap is used extensively for resource
binding, but only a single heap may be accessed by shader programs each

draw call.

Root Signatures

Every shader must be associated with a root signature that specifies the

resources that are required by the shader. Requirements are specified
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through a set of root parameters, which specify how resources are bound
via descriptors to global resources in the shader.

Each global resource in the shader is assigned a unique shader register
from a virtual register space. The root parameters then map descriptors to
all of the shader’s registers. The actual arguments for the root parameters
(root arguments) are submitted onto the command list before every draw
call, with each argument receiving a sequentially numbered blinding slot.

There are several different types of root parameters that specify the
mechanism by which the resource descriptors are mapped to their shader
registers and accessed by the shader. This allows for a high degree of flex-
ibility over data access patterns and allows for the application to trad:w
e off access speed and memory footprint for each resource used by the
shader.

Descriptor handles are the most common type of root parameter and
are effectively pointers into the descriptor heap. This maps the descriptor
to the shader register through an indirection, which is useful for patterns
that use a set of separate but identically laid out descriptor heaps to per-

form their operations on multiple sets of data.

Descriptor arrays are similar to descriptor handles but point to a con-
tiguous range of descriptors in the descriptor heap. Descriptor arrays are
bound to a contiguous range of shader registers in the shader. In general,
descriptor arrays are preferable to descriptor handles as both take up the
same space in the root signature, however, it requires additional coordina-
tion from the application to ensure that relevant descriptors are grouped
and updated together in their descriptor heap.

Root descriptors map descriptors to shader registers by storing them
directly in the root signature. This uses twice as much space in the root

signature as a descriptor handle but does not require the descriptor to be
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present in the descriptor heap, and removes a level of indirection taken
by the shader to access the resource. This makes it trivial to dynamically
set the descriptor every draw call as it only requires changing the root
argument instead of writing to the descriptor heap. These should be used
sparingly, and are most appropriate for highly trafficked resources such as

geometry data.

Root constants are an additional option specifically for CBVs, which
inlines the constant buffer data directly into the root signature rather than
using a descriptor. This reduces the level of indirection to zero so the data
is directly accessible by the shader, but can only be used for a very small

amount of data.

3.1.4 Work Submission

In D3D12 graphics and compute commands are recorded on the host ahead
of time via a command list, and then submitted to the device for asyn-
chronous execution. This vastly differs from the approach taken by previ-
ous APIs, where device state was global between CPU threads and work-
load execution timing and synchronisation was opaquely decided by the
driver.

This approach has several advantages. The ability to record multiple
command lists with independent, localized device state, as well greatly
increases the potential for multithreaded applications.

To support asynchronous device execution, the host is now required
to explicitly synchronize with the device using fences. Fences are 64-bit
semaphores that can be signalled by the device on completion of each com-
mand list. The typical usage pattern is for each command list to increment
the fence’s value by 1, which allows the host to see how much work has

been completed, and optionally wait for work to be completed.
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3.2 DirectX Raytracing

DirectX Raytracing (DXR) is a new API for DirectX 12 that was introduced
alongside Nvidia RTX to support the new hardware raytracing capabil-
ities. Raytracing has significantly different requirements to rasterization,
chief among them being the necessity to have a complete description of the
scene geometry to render indirect illumination. In rasterization, geometry
is explicitly specified and projected directly onto the screen at render time;
any geometry that is not directly visible has no effect on the final image.
This has been a useful assumption that in many respects has made real-
time rendering possible up until this point. Advances in hardware and
shading techniques have produced increasingly accurate approximations
of indirect lighting effects such as reflection and refraction, but at its core,
the rasterization pipeline is primarily built around shading directly visi-

ble geometry.

Another major requirement for the new APl is supporting multiple ma-
terial shaders simultaneously. Each draw call in the rasterization pipeline
passes all geometry through a single shader program that is loaded onto
GPU execution units. This creates the assumption that all shading mod-
els required for the visible geometry are known ahead of time and that
vastly different materials will require separate render passes. This is not
possible in raytracing, again due to the indirect visibility requirements; all
material shaders must be accessible on demand for their indirect lighting

contributions to be accurately rendered.

DXR also supports raytracing against implicitly defined geometry, a
quintessential raytracing feature that was only possible through costly tri-
angulation procedures in the rasterization pipeline. These requirements
have led to the addition of multiple new objects and concepts to D3D12,
as well as greatly more flexible compute capabilities that may be leveraged

by raytracing and traditional workloads alike.



24 CHAPTER 3. DIRECTX 12

3.2.1 Acceleration Structures

Unlike rasterization, raytracing with real-time performance requires the
use of specific acceleration structures to store the scene geometry. Where
geometric primitives have traditionally been fed directly into the rasteri-
zation pipeline, DXR introduces a more complex API to support the cre-
ation and manipulation of acceleration structure objects. Two new re-
source types, bottom-level acceleration structures and top-level accelera-
tion structures are used to represent geometry for raytracing in an opaque,
driver-defined format enabling hardware-accelerated scene traversal. Ac-
celeration structures may be created and modified through a set of new
functions and subsequently bound to the raytracing shader. Range of op-
tional build flags are available to customize the acceleration structure con-
struction to match the application’s use cases, including prioritizing trace
speed, build speed, speed of incremental updates, and memory usage.

Bottom-Level Acceleration Structures

The bottom-level acceleration structure (BLAS) contains the underlying
geometric primitives, and typically represents a single object that may be
used multiple times in the scene. BLAS objects are constructed from a set
of geometries, each containing either a triangle mesh or AABB primitives
for procedural geometry defined via intersection shaders. The use of mul-
tiple geometries also allows the use of different shaders within a single
BLAS through the shader table configuration. Once constructed, BLASes
may then be used to populate top-level acceleration structures.

Top-Level Acceleration Structures

Top-level acceleration structure (TLAS) objects represent an entire raytrac-
ing scene; they do not contain any geometry themselves, instead function-
ing as a container for one or more BLASes. The TLAS is constructed from
a set of BLAS instances, each referencing a single BLAS’s geometry and
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transforming it into the TLAS’s coordinate space with a model matrix.
Each BLAS may be instantiated multiple times, similar to mesh instanc-
ing in the rasterization pipeline. Each instance has several user-provided
parameters which affect raytracing behaviour: instance flag bits, which
may be used by the raytracing shader to ignore subsets of the geometry at
runtime; a shader table offset, which enables certain shader table layout
configurations (section 3.2.3); and an instance ID number which may be
accessed directly in the shaders with the InstanceID intrinsic. TLAS ob-
jects are bound to shaders through SRV descriptors and are used through

a set of new HLSL language features.

3.2.2 Raytracing Shaders

As a hardware-rendering API, the bulk of DXR’s functionality resides in
shader programs on the device, introducing a completely new shader pipeline
and a set of supporting intrinsic functions for HLSL. The shader stages of
the new pipeline model the programmable parts of a typical raytracing
framework, enabling user-defined material and camera models, implicit
geometry, and background illumination. Raytracing is invoked by shaders
with the TraceRay HLSL intrinsic function, delegating scene traversal
and ray-primitive intersection to fixed-function raytracing hardware. The
different shader stages (with the exception of ray generation) act as pro-
grammable callback functions invoked by the raytracing runtime, direct-
ing control flow and implementing the rendering calculations. Data is
passed between stages with a user-defined RayPayload structure, which
may be used to pass supplementary shader parameters and return shad-
ing results (section 3.2.3). Subsequent shader stages may themselves re-
call TraceRay, yielding a recursive execution model that is well-suited to

path tracing and PBR.
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Figure 3.1: Overview of DXR’s shader stages and control flow. The

pipeline begins by dispatching a grid of ray generation shaders. Raytrac-
ing is then initiated with the TraceRay intrinsic, which subsequently calls
the hit group shaders associated with any geometry it hits. Closest hit
and Miss shaders invoked by TraceRay may invoke the procedure again
themselves, enabling a recursive execution model. All shaders communi-
cate through a user-defined RayPayload structure which can hold shader

arguments and return values.
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Ray Generation Shader

The ray generation shader is the first stage of the raytracing pipeline and
the only stage invoked directly by the host. As the name suggests, it gen-
erates the primary rays for the renderer and additionally is responsible
for accumulating and writing the image results. Unlike pixel shaders, the
ray generation shader does not automatically write its output to an API-
designated framebuffer; instead, it functions like a compute shader.

Ray generation is dispatched directly by the hostina 1, 2, or 3-dimensional
grid, with each shader thread receiving a unique ID corresponding to its
grid position. To render the output, a writable buffer must be provided to
the shader through a UAV descriptor and then copied to D3D12’s frame-
buffer after raytracing has finished. This allows for flexible usage of the
raytracing pipeline beyond rendering a 2-dimensional image, such as vol-
umetric or discrete point sampling.

In a typical rendering setup, the ray generation shader is dispatched
with dimensions equal to the image resolution, with each shader gener-
ating ray samples according to the camera model. The shader then sam-
ples the irradiance of the scene using TraceRay, integrates the results and
writes to its corresponding pixel in the output buffer.

Closest Hit Shader

The closest hit shader is the other core shader stage of the raytracing
pipeline. It is invoked by the raytracing runtime at the point of intersec-
tion on the nearest surface. This stage is most similar to a pixel shader as
it is executed on every visible surface and will typically contain the im-
plementation for material shading. Closest hit shaders may themselves
invoke subsequent calls to TraceRay, enabling indirect lighting calcula-
tions and path tracing.

Unlike pixel shaders, the closest hit shader does not automatically re-

ceive interpolated vertex data. Instead, the raytracing runtime provides
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some geometric information about the intersection to help the shader im-
plementation fetch or generate the corresponding vertex positions and
attributes. This includes the primitive index, barycentric coordinates, and
distance along the ray, among others. Because the acceleration structure
geometry is opaque, shaders must hold their own copy of vertex data to
implement their shading.

Miss Shader

The miss shader is invoked in place of the closest hit shader if the ray
query does not intersect the specified geometry. Typically this will be used
to render the background of the scene.

Intersection Shader

The intersection shader is an optional shader stage that allows for the
implementation of procedurally defined geometry, rather than a triangle
mesh. If an intersection shader is provided, the ray query will instead
trace against the object’s bounding box (specified during the acceleration
structure build), and if that intersects, the intersection shader is called. The
intersection shader takes the original parameters of the ray query and is
responsible for determining if it intersects the geometry within the AABB.
This can be used to implement geometry such as spheres with analytical
methods, or more complex objects such as height fields and isosurfaces
without the need for polygonizing their surface.

Any Hit Shader

The any hit shader is an optional shader stage that functions similarly to
the closest hit shader. It is invoked by the runtime on potential candidates
for the closest hit and is able to direct the control flow of the runtime to pre-
maturely accept or reject the candidate as the closest hit. The two primary
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use cases are to improve efficiency for rendering transparency and shad-
ows - the hit may be ignored to render transparent objects, or accepted if
a light source is occluded by any object along the ray. It may also update
the payload accordingly. This shader stage makes weak guarantees about

its invocation and cannot invoke TraceRay itself.

Callable Shaders

Callable shaders are not integrated into the raytracing pipeline by de-
fault, but allow general-purpose compute shaders to leverage the dynamic
execution capabilities that were introduced with the raytracing pipeline.
Callable shaders function very similarly to hit and miss shaders, except
they are called directly by the invoking shader rather than indirectly through

the raytracing runtime, and may invoke other callable shaders recursively.

3.2.3 Shader Execution Model

To support the dynamic dispatch of shaders, DXR introduces entirely new,
dynamic shader and resource binding mechanisms that forgo the up-front
binding model of rasterization. At the same time, the new HLSL intrin-
sics allow the shaders to direct the control flow of the raytracer and query

geometric calculations from the hardware raytracing runtime.

Shader Records

DXR extends the DX12’s state-driven resource binding API and binds ray-
tracing shaders and their resources through new objects called shader
records. Shader records are a transparent data structure comprised of two
parts: one or more shader identifiers, 32-byte blobs which uniquely refer
to a compiled shader program on the device; and the instantiated local
root arguments that are required by the referenced shaders.

As an extension to global root signatures, raytracing shaders now ad-

ditionally define a local root signature to specify resource requirements
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that are not applicable at global scope. This enables a high degree of het-
erogeneity between in-flight shader programs with potentially differing
resource requirements, and also allows shader programs to be instantiated
multiple times with multiple sets of arguments. In particular, local root ar-
guments may be used to store the specific material properties of objects in
the scene, or contain references to associated data such as vertex attribute
buffers which must be stored separately from the raytracing acceleration

structure.

There are three kinds of shader records corresponding to different stages
of the raytracing pipeline:

Ray generation and miss shader records each contain a ray generation
or miss shader identifier and the shader’s local root arguments, and are
bound by the runtime whenever either shader stage is executed.

Callable shader records are much the same but are not required for ray-
tracing and are manually selected in the shader rather than automatically
by the DXR runtime.

Hit group shader records contain the shader identifiers and local root
arguments for a specific hit group; a bundle of closest-hit, intersection,
and any-hit shaders. The any-hit shader is optional, and the intersec-
tion shader is only required for procedural geometry, defaulting to DXR'’s
built-in triangle intersection algorithm if not specified. Hit groups are
bound at runtime when TraceRay is invoked, assigning all raytracing
with a specific hit group shader record to dynamically specify its shading

implementation.

Shader Tables

Shader tables form the basis of DXR’s dynamic shader dispatch mecha-
nism: linear arrays of shader records that the user creates directly in GPU
memory and passes to the API through virtual pointers. Each type of
shader record has a corresponding shader table: the ray generation, miss,
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callable, and hit group shader tables; although in practice the ray generation
shader table only contains a single record and the callable shader table
may be omitted. These are then dynamically indexed at runtime, binding
and executing the shader record at the specified index in the table. While
the contents of each shader record may vary due to differing local root sig-
natures, all entries in each shader table must have a fixed stride to support
dynamic addressing by index.

Shader tables must be carefully laid out by the user to match how the
shader records are indexed. For miss and callable shaders, shader table
indices are supplied directly by the calling shader, requiring only that the
user populates the tables in a consistent manner. However, to support dy-
namic shader dispatch from TraceRay, the hit group shader table uses a
fixed-function addressing calculation that tightly couples the shader table
with acceleration structure layout.

Hit group indices are calculated within the TraceRay invocation ac-
cording to the following pseudocode:

hitgroup_index = traceray_offset

+ (blas_geometry_index % traceray_geometry_stride)
+ tlas_instance_offset

The caller of TraceRay provides two addressing parameters, the first
providing an initial offset into the table that can be used to partition it into
different sets of functionality that may be required by the shaders. The
other parameter from TraceRay controls the stride contribution to the hit
group index from BLAS geometries; each geometry during BLAS construc-
tion is assigned a unique index in the order they were provided to the
API (section 3.2.1); this allows each geometry within the BLAS to use dif-
ferent shaders to create objects composed of multiple different materials.
Finally, each BLAS instance in the TLAS contributes a fixed offset that is
user-specified during TLAS construction (section 3.2.1).

In a trivial setup, only the instance contribution may be used, mapping
each BLAS instance to a single hit group by setting the geometry stride
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and table offset to zero. By utilizing all addressing parameters, the in-
stance contribution can be used to allocate variably sized ranges of shader
records for each BLAS that are selected through geometries” contribution.
This allows for a broad range of addressing schemes that must be coordi-

nated between the shader table and acceleration structure.



Chapter 4
Implementation

In this section, I will describe in detail the implementation of my raytracer.
It is implemented in C++ and HLSL using the Windows and DirectX 12
APIs. A small number of open source C++ libraries are used: DirectXMath
for vector and matrix arithmetic; Dear ImGui for user interfacing; STB for

image capture output; as well as the C standard library.

4.1 System Overview

The raytracer is an interactive, GPU-based renderer that supports progres-
sive rendering of a static scene and real-time adjustment of a wide range
of rendering and material parameters. It implements path tracing in DXR
that rapidly accumulates image samples to provide immediate user feed-
back. Its primary feature is first-class support for translucent materials
with a physically-based subsurface light transport model, allowing real-
time adjustment of scattering and absorption terms under global illumi-

nation.

Outside of mesh loading, windowing, and U]I, the bulk of the software is
implemented with shaders on the GPU. There are three major GPU-driven

components: Image sampling (ie. the raytracer); surface irradiance sam-

33
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Figure 4.1: GPU pipeline overview. Solid arrows represent control flow

and dashed arrows represent data dependencies.

pling for translucent materials; and blue noise surface point generation for
evenly distributed irradiance samples.

Both the image sampling and irradiance sampling shaders make use of
a shared raytracing pipeline implemented with DXR, while the blue noise
point sampling exists as a standalone pipeline implemented with D3D12
compute shaders.

4.2 Software Architecture

My raytracer was developed largely from scratch with minimal dependen-
cies to enable a high degree of flexibility during development. The main
programming philosophy that I chose to employ is data-oriented design
(as opposed to object-oriented design), which seeks to minimize layers of
abstraction and promote plain-old-data as the preferred representation of
program state. This approach is beneficial for rendering as it reduces the
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number of discrete allocations and object graph complexity and simplifies
state transfer between host and device.

421 Modules

In keeping with the data-oriented philosophy, the raytracer’s codebase is
separated into a small number of modules which are each responsible for
a subset of its functionality. Each module encapsulates a subset of the
program’s global state which is modified through their external APL

The Device module is responsible for initialising the D3D12 device
context and provides a number of utility functions for creating and using
D3D12 objects.

The Rayt racing module creates and configures the raytracing pipeline,
and exposes an API for the rest of the program to specify scene geometry,
materials, and acceleration structure layout.

The Bluenoise moduleis a self-contained module implementing hardware-
accelerated blue noise surface sampling.

4.2.2 Utilities

To avoid the trappings of object-oriented design the C++ standard tem-
plate library is not used in the project. Instead, I have developed simple
in-house replacements for common workhorse classes emphasising data
transparency. The primary utility classes are ArrayView and Array, re-
placing STL’s std: :slice and std: : vector respectively, and are used

extensively in the application’s internal APIs.

template<typename T> template<typename T>
struct ArrayView { struct Array
T%* ptr; : public ArrayView<T>

size_t len; {
}s size_t cap;

}i
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ArrayView<void> is a template specialization that is used by some
raw data transfer functions to represent an untyped memory range (i.e. a
voidx plus length tuple) and does not implement functionality beyond
stride-checked reinterpret casts.

4.2.3 Execution Model

The rendering context, including window handles, descriptor heaps, com-
mand list, and command queue, is managed by the program’s main func-
tion and is passed as needed to modules” API functions. Specifically, mod-
ules that require the GPU to submit their operations to the command list
but do not execute them themselves - the command list is retained within
the main function and executed at an appropriate time after the API func-
tion returns.
ID3D12Resourcex Device::create_buffer_and_write_contents (
ID3D12GraphicsCommandList* cmd_list,
ArrayView<void> data,
V4
)i
void Raytracing::dispatch_rays(
ID3D12GraphicsCommandList4* cmd_list
)i

This models GPU-facing functions as extended command list operations
that also perform their necessary set-up on the CPU side. This approach
centralises device synchronisation for the entire application and has good
separation of concerns for additional render passes, such GUI rendering
with the third-party library Dear Imgui.

One of the main issues this pattern presents is that modules must stage
temporary resources on the GPU while waiting for the command list to
execute on them. This is commonly required when transferring data be-

tween host and device. I employ a simple memory management solu-
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tion where the device module maintains a list of temporary resources that
modules can submit to, which are then released at the end of every frame
after rendering is completed.

namespace Device {

extern Array<ID3D12Resourcex*> g_temp_resources;

void push_temp_resource (ID3D12Resourcex resource);
void release_temp_resources(); // called once per frame

}

More advanced device memory management strategies are possible with
the D3D12 allocation API, however, resource allocation in the renderer is
infrequent beyond program initialization, so this simple solution is suffi-

cient.

4.3 Geometry Processing

The first stage of the raytracing pipeline is loading and preprocessing the
scene geometry. This makes up the bulk of the program initialization and
performs the steps necessary to transform the input geometry and scene
description into the format used by the raytracing pipeline.

The raytracer does not yet support scene description files but uses a
simple internal API in the source code as an intermediate step towards a
human-readable format. Its overall structure mirrors DXR’s internal ge-
ometry format at a high level, supporting explicit control over BLAS ge-
ometries and instancing, while allowing the implementation to manage

the dependencies between the acceleration structures and shader tables.

4.3.1 Mesh Loading

Geometry is first loaded into an index format from a set of .obj files
and subsequently formatted into a set of GeometryInstance structures,

specifying shader and material properties.
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void parse_obj_file(
const charx filename, bool convert_to_rhs,
Array<Vertex>* vertices,
Array<Index>* 1indices

)

namespace Raytracing {
struct GeometryInstance {
ArrayView<Vertex> vertices;
ArrayView<Index> 1indices;
Material material;
i
}

Each GeometryInstance corresponds to a geometry within a BLAS in
DXR’s API, with each geometry being assigned a single entry in the shader
table. Three shader types are currently supported: Lambert for diffuse
surfaces; Light for volume lights; and Translucent, which covers a

broad range of subsurface scattering properties.

4.3.2 BLAS Construction

The GeometryInstance structures are then passed into thebuild_blas
function. This uploads the mesh data to the GPU, constructs the DXR
BLAS object from the set of geometries, and assigns it a region of the
shader table.

namespace Raytracing {
struct Blas {
ID3D12Resourcex* blas;
ID3D12Resourcex Vvb;
ID3D12Resourcex ib;

UINT shader_table_index;
UINT translucent_ids_index;
UINT translucent_ids_count;

}i
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Blas build_blas(
ID3D12GraphicsCommandList4x cmd_list,
ArrayView<GeometryInstance> geometries
)
}
Each BLAS represents a single object or set of objects that may be instanced
and placed into the scene. The Raytracing: :Blas structure contains
references to the D3D12 resources containing the BLAS object, the GPU'’s
copy of the index and vertex buffers, and metadata that is used to reference
the BLAS's corresponding shader table slots (section ??).

The Rayt racing module internally maintains and updates the global
shader table. Each new BLAS is sequentially assigned a region of shader
table slots for each of its geometries, to be shared by all instances of it in
the TLAS.

The vertex data from all geometries is concatenated into a single pair
of vertex and index buffers to reduce the number of GPU objects. Each
geometry stores an offset into the index buffer in its shader record that is
then used to query its specific vertex data in the shader.

This procedure also performs initial bookkeeping for translucent ge-
ometries, each requiring an additional set of resources for their irradi-
ance samples. Every BLAS geometry with the Translucent shader is
sequentially assigned a unique translucent_id. This is used by the
Raytracing module to generate blue noise surface samples and to refer-
ence them in the shader.

4.3.3 TLAS Construction

The TLAS is constructed with the build_tlas function, specifying the
layout of the scene. It takes a set of BlasInstance structures that pair an
object-to-world-space transform with a BLAS reference, allowing multiple
instantiations of each BLAS. This builds the DXR TLAS object, uploads the
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finalised shader table, and generates an initial set unique set of irradiance

sample points for all translucent geometry instances (section 4.6).

namespace Raytracing {
struct BlasInstance ({
XMFLOAT4X4 transform;
Blas* blas;
bi

void build_tlas(
ID3D12GraphicsCommandList4x cmd_list,
ArrayView<BlasInstance> instances
)i
}
The resulting TLAS is stored internally in the Raytracing module and
used as the scene for the raytracer.
Each BLAS instance within the TLAS build is assigned its shader table
offset
The t ransformand the Blas’s BLAS resource and metadata are used
to populate the D3D12_RAYTRACING_INSTANCE_DESC structures that
are required for the top-level acceleration structure build.

4.4 Raytracing Procedure

4.4.1 Path Tracing

The raytracer uses a simple implementation of path tracing that directly
integrates individual light paths through the scene. While DXR enables
recursive calls to TraceRay in hit and miss shaders, each recursive call
requires stack space that must be declared up-front that should be min-
imised.

My implementation uses a non-recursive model that only samples a
single direction on the hemisphere for each bounce, unlike the typical ap-
proach which integrates multiple samples, requiring a maximum recur-
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sion depth of 1. This initially produces noisier results and converges more
slowly but is an equivalent form of the path integral LTE that significantly
reduces computational complexity per primary ray.

The path sampling procedure takes advantage of linear terms in the
rendering equation to iteratively step along path segments and accumu-
late the partial reflected radiance (due to emission) and partial attenuation

(due to surface reflection) with a fixed number of variables. Given:
L =L+ R (L’ + R (L’ + R (--- RV - LY)))

For a path with NV bounces, the total transmitted radiance along a path can

be expressed in terms of an iterated sum and iterated product:

L:Z (LJ-ﬁRﬂ')

i=1 j=1

This is implemented in the t race_path_sample procedure with the fol-

lowing pseudocode:

trace_path_sample (ray, bounces):
transmission := 1 // attenuation along path

radiance := 0 // accumulated emission

// iterate over path segments
for i := 0..bounces:

payload := TraceRay(ray)

// integrate reflectance and emission from path segment
radiance += reflectance % payload.emission

transmission *= payload.reflectance
// step ray to next point on path
ray.origin += ray.direction x payload.distance

ray.direction = payload.scatter_direction

return radiance
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The procedure is tightly coupled with the closest hit shader implemen-
tations, which are responsible for returning the RayPayload that specifies
how materials are rendered.

4.4.2 Hit Shaders

Closest hit shaders and the path sampling procedure communicate through
the user-defined RayPayload structure. This is passed as an inout vari-

able to the TraceRay intrinsic, allowing two-way communication between

the stages.

struct RayPayload {
uint rng;
float t;

float3 scatter;
float3 reflectance;
float3 emission;

}i

The rng field contains the random number generator state which is
seeded per-sample-per-frame by the ray generation shader. The modified
value is returned by hit shaders to ensure all hit shader invocations receive
a unique random sequence. Random number generation is implemented
with a 32-bit Xorshift PRNGJ[11].

The t field contains the distance travelled by the ray to intersect the
hit surface. This is available to the hit shader through the RayTCurrent
intrinsic, but must be returned to the hit shader for it to calculate the ray’s
point of intersection.

scatter, reflectance, and emission collectively specify the ma-
terial properties of the hit surface. scatter returns a random direction
on the hemisphere of the surface that was hit. This allows closest hit
shaders to individually determine their sampling distribution, such as a
cosine-weighted distribution for Lambertian surfaces or perfect reflection
for mirror-like surfaces. reflectance then returns the 3-channel BRDF
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for the incident ray (via the Wor1dRayDirection intrinsic) and the sam-
pled direction. This must also be normalized if non-uniform sampling is
used. Finally, emission returns the 3-channel emissive component of
the material. This is used for light sources, which do not reflect light,
and translucent materials, which combine surface reflections and non-

local subsurface light transport.

4.5 Blue Noise Sample Point Generation

Blue noise sample points are generated through a separate compute pipeline
in the Bluenoise module. The module implements a slightly modified
version of Bowers’ parallel algorithm[2], splitting it into preprocess and
point-generation steps to enable rapid resampling of surfaces in the inter-
active renderer. This is extremely beneficial for translucent material tun-
ing as the required sample point density is directly correlated to the mean
free path of the BSSRDF. It is also extended to support (angle-preserving)
3-dimensional transformations of the source geometry, allowing multiple
instantiations of the same geometry in the raytracer to share their base
mesh and preprocess data.

The algorithm works by first creating an initial dense set of uniform
random samples on the surface of the mesh, then selecting samples from
the initial set that are a minimum distance away from all other selected
points, yielding a blue noise distribution. The key observation that allows
this algorithm to be executed efficiently on the GPU is that points may be
drawn in parallel if the distance between them is known to be greater than
the sample rejection radius. This leads to a grid-based algorithm, dividing
the geometry into cubic cells of width r//3, and associating each point in
the initial set of random samples with its containing cell. Finally, grid cells
iteratively draw points from the initial set in parallel phase groups, checking

adjacent and committing the point if its rejection radius does not overlap
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any other committed points.

4.5.1 Mesh Preprocessing and Instancing

In order to mirror the functionality of BLAS instancing provided by DXR
and the raytracer’s geometry API, the Bluenoise module factors the
algorithm into separate preprocessing and point generation procedures.
Preprocessing the mesh data allows on-demand surface resampling with-
out copying any resources to the GPU, while the point generation proce-
dure modifies the algorithm to support 3-dimensional instance transforms

while respecting the sample rejection radius in world-space units.

The preprocessing procedure is the only scalar, CPU-driven operation of
the blue noise pipeline, computing an array of cumulative surface areas of
each primitive in the mesh. This is uploaded to the GPU to be used by the
initial random sample generation stage of the pipeline. It also calculates
the mesh’s bounding box which is subsequently used to determine the cell
grid dimensions. The results are stored in a Bluenoise: :Preprocess

structure that is associated with each translucent geometry.

namespace Bluenoise {
struct Preprocess {

UINT indices_count;

Aabb aabb;

float total_surface_area;

ID3D12Resourcex partial_surface_areas;
bi

Preprocess preprocess_mesh_data (
ID3D12GraphicsCommandList* cmd_list,
ArrayView<Vertex> vertices,
ArrayView<Index> indices

)i

}i
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The sample point generation procedure is then called for all instances
of the translucent geometry, taking the preprocess data shared between
all instances and the instance-specific world-space transform. Mesh data
is borrowed from the raytracing environment, whose format concatenates
all geometry in each BLAS into a single pair of vertex and index buffers;
the mesh data for the specific translucent geometry is accessed through an
offset into the index buffer.
namespace Bluenoise {

UINT generate_sample_points(
ID3D12Resource** sample_points_buffer,

ID3D12Resourcex* point_normals_buffer,

float+ scale_factor,

Preprocess* preprocess,
ID3D12Resourcex 1ib, UINT ib_offset,
ID3D12Resourcex vb,

XMFLOAT4X4x transform,

float rejection_radius

To account for instance scaling, the uniform scale factor is determined
from the transformation matrix and returned to the caller; non-uniform
scaling cannot be supported as this would require completely recalculat-
ing the partial surface areas array. The world-space rejection radius is
then transformed into model space by inversely scaling it, giving ripcal =
Tglobal/S- This adjusts the algorithm to sample more or less densely accord-
ing to the scaling of the instance. Translation and rotation do not need to
be accounted for at this stage as they do not affect surface area.

Finally, as blue noise samples are drawn they are converted into world
space by applying the transform matrix. Because each instance experi-
ences different lighting conditions it is not possible to have a shared set
of points between instances; they are transformed up front to reduce the

code complexity of the translucent rendering shaders.
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4.5.2 Initial Random Point Generation

Generating the initial uniform random samples is performed in two steps:
First, cumulative surface areas of each primitive in the mesh geometry are
calculated and stored in an array; this is done ahead of time by the prepro-
cessing procedure. Then, primitives are then randomly selected from this
array, weighted by surface area, and a random point is generated on the

triangle and stored in the initial set.

Generating the initial sample points is trivially parallel and is performed
on the GPU in a single compute kernel. The procedure allocates a fixed-
size array for the initial points and dispatches a shader thread to generate
each element.

Accurately estimating the required size of this set is important for gen-
erating good-quality results. An upper bound on the number of blue noise
samples can be calculated by assuming each point occupies a circular re-
gion of half the rejection radius: N < |A/ (7(%)?)|. My implementation
generates initial sample points with a factor of 16 over this upper bound,
rounded to the next power of two to simplify subsequent compute ker-
nels. Increasing the factor beyond this did not noticeably improve visual

results.

4.5.3 Hashtable Construction

After the initial sample points are generated they are associated with their
cells through a hashtable. A hashtable is used rather than a volumetric
grid as typically only a small proportion of the cells will lie on the object’s
surface. The hashtable is constructed by first sorting the initial points array
by cell; this partitions the set into linear arrays of all the points within each
cell. The hashtable entry for each cell is then assigned the first index of its
partition, functionally mapping all occupied cell IDs to a list of random

points within the cell.
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Each bucket in the hashtable also contains a member to store the se-
lected sample point from each cell. This is initialised to a default value
and is used by the final kernel to reject sample points that are too close.

Sorting is implemented with a parallel bitonic sort kernel. The kernel is
dispatched iteratively over the array, and sorts the points in a fixed num-
ber of iterations by comparing and swapping pairs of elements according
to a predefined pattern.

The hashtable is implemented as a simple bucketed hashtable. The in-
dices of each partition of the sorted buffer are found by dispatching a ker-
nel on each element and checking if its predecessor belongs to a different
grid cell. The indices are then added to the hashtable in parallel, using
an atomic add instruction to allocate each cell ID a unique bucket in the
case of hash collisions. My implementation allocates 5 buckets for each
table entry. Due to the complexity of implementing probing on the GPU,
my implementation discards entries in the case of overflow, however, this

situation is uncommon in practice.

4.54 Sample Point Selection

The final stage iteratively draws samples from the cell grid in parallel phase
groups. Each cell in the phase group selects a single trial point from the
initial random set, testing it against the selected points (if present) in all
adjacent cells. If the trial point does not lie within the rejection radius of
any other selected points, it is added to the set of blue noise samples and
is stored in the cell’s hashtable bucket. This process is executed for each
phase group in a randomly determined order, and is repeated until all
points have either been rejected or selected.

To ensure parallel threads do not select conflicting points, the phase
groups must be separated by a minimum of 1 cell width for a minimum
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number of 2 x 2 x 2 groups; in my implementation I use 3 x 3 x 3, as
recommended in the paper.

After the final set sample points has been calculated it is passed back
to the Rayt racing module for irradiance sample collection and BSSRDF

integration.

4.6 Diffuse Reflectance Evaluation

After the blue noise sample points have been generated, evaluating diffuse
reflectance for translucent geometry is implemented in two steps: collect-
ing irradiance samples and integrating them with the BSSRDEFE. This ap-
proach is based on the work of Jensen and Buhler in their 2002 paper|[8].
Both stages must consider a range of optical phenomena to produce accu-

rate results and maintain conservation of energy within the scene.

4.6.1 Irradiance Sampling

First, surface irradiance is sampled by tracing path samples from the sur-
face of the translucent geometry. Each blue noise sample point has its sur-
face normal stored in a separate buffer that is used by this stage. The ray
generation shader is dispatched for every sample point in the scene and
path samples are drawn randomly from the hemisphere of the surface.

The incident irradiance contribution from the path sample is then cal-
culated using the cosine law. This is separated into a transmitted compo-
nent and a reflected component using a Fresnel term; the reflected compo-
nent is discarded. Finally, the contribution is stored in the sample point’s
payload. The results are averaged by sample point area and accumulated
over time.

To allow both stages to run in parallel, the irradiance sample collection
writes its results to a clone of the sample points buffer used by the BSS-
RDF integration. The updated sample points of the former stage are then
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copied to the latter stage once per frame.

4.6.2 BSSRDF Integration

Integrating the BSSRDF is done on demand in the translucent material hit
shader. This trivially implements the surface integral by iterating over all
sample points on the geometry and calculating their contribution with the
BSSRDEF. In addition to emission due to subsurface scattering, this stage
also calculates surface reflectance.

The BSSRDF is computed in RGB space using Jensen et al.’s dipole dif-
fusion model[9].
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Chapter 5

Results

Development of the raytracer was done on a Windows 10 PC with a 6-core
Intel Xeon processor and an Nvidia RTX 2080 Ti GPU. The application (fig.
5.1) runs in an interactive sample accumulation loop, allowing real-time
adjustment of camera and material parameters. The image is reset when-
ever parameters are modified and rapidly begins accumulating samples,
giving instant feedback to changes.

It supports a single translucent material, whose properties can be ad-
justed at runtime, and is applied to all translucent objects in the scene. The
translucent geometries each store a set of surface irradiance sample points
that accumulate in tandem with the image, which are similarly reset when
the lighting conditions or the surface transmission properties are altered.

Before implementing translucent materials, the first stage of develop-
ment was to lay the foundations of the path tracer and render a basic scene.
I have used a slightly modified Cornell Box scene (fig. 5.2) through most of
development, as it provides a simple test bed that is easily adapted to test
different shaders. It’s also a good fit for translucent materials due to hav-
ing a large, single light source showcasing the material’s diffusion profile
at two different heights.

With the basic pipeline in place, implementing full support for translu-

cent material would be the main focus of the development past this point.
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Figure 5.1: Screenshot of the final application, showing a partially ren-

dered scene and parameter controls.

This is a synthesis of multiple complex features that had to be broken into
multiple steps. I first implemented the BSSRDF model on static geometry
that I could trivially generate a uniform set of sample points on, as well as
the initial versions of the shaders for irradiance sampling and integration
(fig. 5.3).

The model is very sensitive to sample point density due to the shader
integrating the BSSRDF over a discrete set of points. If the mean free path
of the material is significantly lower than the distance between a set of

points then they appear as visibly bright patches on the object’s surface.

This limits the range of materials that can accurately be displayed by
the model based on the maximum point density. Recall that the mean
free path is given by the reciprocal of the extinction coefficient: 1/0y =
1/ (0a + o). This is problematic: for the mean distance between sample
points to maintain parity with the mean free path, the average density

increases with the square of the extinction coefficient, causing the model to



53

Figure 5.2: The requisite Cornell Box render, demonstrating an emissive
surface, soft shadows, and diffuse interreflection.

rapidly approach an upper bound on memory and computation for highly
scattering or absorbing media.

While the blue noise algorithm is readily capable of quickly generating
a very high density of samples, there is a hard limit around ¢ < 50 in the
renderer (variable depending on surface area of translucent objects) due to
the aforementioned computational complexity bound. I have specifically
chosen to show low-extinction media in the results for that reason; I dis-
cuss possible solutions in the potential expansions section (6.1.3). In any
case, this is a better representation of the nonlocal capabilities of the ren-
derer, as high-extinction media tends towards being opaque appearance.
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Figure 5.3: Earliest BSSRDF implementation using a regular grid of sample
points. The visible sample points are due to the material having a much
lower mean free path than the distance between the samples. Dark patches
were due to a bug. The rightmost cube demonstrates a subtle but well-
formed diffusion profile.

The GPU blue noise sample point generation algorithm is implemented
in a separate compute shader pipeline. It is able to generate very large
numbers of points with a very fast response time, enabling live tuning
of the sample point density to match the requirements of the translucent
material (fig. 5.4, 5.5). Sample point generation is well-integrated with
the raytracing pipeline, respecting instantiations of translucent geome-
try. This modifies Bowers” algorithm[2], splitting it into a preprocessing
step that caches transform-invariant intermediate results, and extending
the sample point generation step to convert the world-space rejection ra-
dius into local space. This accounts for instance translation, rotation, and
scaling, transforming the generated samples into world-space as they are
generated. After fully integrating the pipeline I first experimented with
single-channel BSSRDFs, with uniform scattering and absorption cross-
sections across the spectrum (fig. 5.6, 5.7). As previously mentioned, the
renderer is best suited to low-extinction media, producing very appealing
results with a large mean free path. These wide diffusion profiles give a

very convincing impression of volumetric illumination within the object.
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Figure 5.4: Debug visualisation of generated sample points overlaid on
their cell grid. Colours represent the 3 x 3 x 3 phase groups. Points are
shown with radius of half the rejection radius, representing the largest
non-overlapping region around them. While the rejection radius ensures
a minimum distance between points, the mean is generally higher. Gaps
with the area of the rejection radius are inevitable due to the greedy con-
straint resolution algorithm on the initial random samples. Axis-aligned
planes (as pictured) are a particularly pathological case as they prevent or-
thogonally adjacent grid cells (width r/+/3) from mutually selecting sam-

ple points, producing somewhat crystalline, periodic regions.
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Figure 5.5: Visualisation of blue noise sample points at various densities.
From left to right: (r = 0.025, N = 1330); (r = 0.015, N = 3634); (r =
0.008, N = 13511). The total number of points is inversely proportional to
the square of the rejection radius, requiring drastically many more points

for media with a low mean free path.

Extending the BSSRDF model to support multiple channels was fairly
simple and I began experimenting with skin-like rendering. I used a base
set of RGB scattering and absorption coefficients approximating skin pub-
lished by Jensen[9]. I then modified these base values to simulate blood
and melanin chromophore concentrations: for blood I increased scattering
of the red channel, and for melanin I increased absorption across all chan-
nels. While this is a fairly crude approximation it produced a convincing
proof of concept for integration with biophysically based BSSRDF models
(fig. 5.8).

During development, I experimented with using exported diffuse re-
flectance data exported from a Monte Carlo skin simulation[5]. The ray-
tracer is able to support texture-based BSSRDFs, but it proved difficult to
integrate the spectral representation of the data into the pipeline. Physi-
cally accurate skin rendering requires taking into account multiple chro-
mophores’ spectral profiles resulting in very subtle shifts in hue that can-
not be replicated by an RGB model. Implementing a spectral renderer in
DXR was well beyond the scope of this project due to its significantly in-



Figure 5.6: Increasing scattering coefficient. From top left to bottom right:
os = 10.0,12.5,20.0,30.0; Absorption fixed at o, = 0.005. These values
present large changes in the mean free path, allowing light to be transmit-
ted much more freely through the medium at the lower end, and much
less at the higher end. This makes the material appear more opaque and
increases the intensity of its brightest spots due to the narrower distribu-

tion of scattered light.
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Figure 5.7: Increasing absorption coefficient. From top left to bottom right:
o, = 0.01,0.1,0.5, 1.0; Scattering fixed at o, = 30.0. The relatively small ab-
sorption values have minimal impact on the mean free path, so the radius

of the brightest area is visually unchanged. However, transmission is re-
duced throughout, making a noticeable impact on the brightness of the
object, especially at the edge of the diffusion profile.
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Figure 5.8: Using 3-channel subsurface scattering to imitate the subsurface

scattering of different skin compositions. Left-right: blood concentration;
top-bottom: melanin concentration.

creased resource requirements. As such this is left on the table for further
research, for which I discuss potential solutions in the potential expan-
sions section (6.1.5).

Finally, I applied 3 variants of the skin BSSRDF approximation to a 3D
human face scan (fig. 5.9). For this model, I used a much higher den-
sity of sample points (10547 in total)’ than previous renders to support a
relatively low mean free path. The results demonstrate the non-local sub-
surface scattering very well, particularly in and around the nostrils where

the thin boundary allows a significant amount of light transmission.
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Figure 5.9: Skin BSSRDF applied to 3D facial scan. Top: Low melanin,
low blood; Middle: Low melanin, higher blood; Bottom: Higher melanin,
higher blood. Model supplied by owner with permission.
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In the low melanin, high blood model the hue shifting caused by the
non-uniform scattering coefficients is especially visible. On all models,
the lighting is diffused smoothly across the cheek despite the light source
shining directly downwards. While the lips would benefit from locally
increased chromophore saturation, the darkened cleft in the parting is also
a nice demonstration of diffuse light from the light-facing surface of the
lips partially illuminating the occluded region.

All three models would benefit significantly from a microfacet BRDF
model for surface reflections, especially the higher melanin model where
specular reflections have higher contrast. They also all suffer slightly from
a subtly mottled texture. This is due to pushing the mean free path slightly
lower than the sampling density can support, as well as gaps in the distri-
bution due to the exhaustion of the initial random sample set in the sample
generation procedure.

On the whole, these renders are an excellent showcase of the translu-
cent material implementation and show promise for future developments
of the technology.
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Chapter 6
Conclusion and Future Work

I have developed a general-purpose GPU path tracer, utilising modern
hardware and APIs, that supports real-time rendering of subsurface scat-
tering under global illumination. I have implemented an extendable pipeline
architecture in DXR that can support a wide range of material models
and sampling methods. In support I have created a minimal scene cre-
ation API that exposes the low-level configuration of acceleration struc-
tures provided by DXR while internally maintaining intricately coupled

associated data structures.

The raytracer is extended with first-class support for translucent mate-
rials to allow real-time visualisation of subsurface scattering properties. I
implemented a multichannel BSSRDF model introduced by Jensen et al.[9]
that is capable of rendering a broad range of subsurface scattering mate-
rials and properties. This is integrated under a two-stage pipeline based
on the work by Jensen and Buhler[8] that measures surface irradiance at
pre-generated sample points on the geometry and calculates diffuse re-
flectance by integrating over these. Finally, this is supported by a GPU
blue noise surface sampling algorithm based on the work of Bowers et
al.[2], capable of near-instantaneous resampling to meet the sample reso-

lution requirements of different BSSRDFs.
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6.1 Potential Expansions

6.1.1 Software Features

While the raytracer supports a wide range of parameters, it is currently
limited to a static scene that is specified in the source code. While the in-
ternal API makes it easy to edit the scene in source, implementing a scene
description format is necessary for shipping a useful piece of software.
Live scene editing could also be implemented by leveraging modifiable
acceleration structures in DXR; this would enable full customisation of the

scene while rendering it in real-time.

6.1.2 Physically-Based BRDF Models

As the focus of the renderer was on subsurface scattering, currently it only
supports Lambertian reflectance models and has no support for texture
mapping. While useful in general, these features are both particularly im-
portant for the rendering of realistic skin. Both surface reflectance and sub-
surface scattering are spatially varying over the body with numerous pa-

rameters including roughness, moisture, and chromophore concentrations[6].

6.1.3 Accelerated Irradiance Sample Integration

The current diffuse reflectance integration shader performs an iteration
over the entire set of samples for each closest hit shader invocation. While
raytracing performance is adequate most of the time, the computation
time becomes prohibitive at high numbers of sample points, effectively
putting a limit on the highest scattering cross-section that can be rendered
in the raytracer. Jensen and Buhler[8] suggest using an octree data struc-
ture to hierarchically store irradiance values over areas of multiple sample
points. This approach works well for static scenes, but presents challenges

with real-time accumulation on the GPU, due to the strong ordering con-
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straints of propagating dynamic sample point estimates up through the
tree. Interpolation of irradiance estimates between sample points would
also improve performance by reducing the required sampling density. Cur-
rently, when the surface is undersampled, each point creates a local “bright”
spot due to the mean free path being significantly lower than the distance
between samples. Efficiently implementing interpolation would likely re-
quire some kind of adjacency data for the sample points, which could pos-
sibly be efficiently computed by further extending the implementation of
Bower’s algorithm[2]. Additionally, the radial symmetry of the BSSRDF
models could possibly be leveraged to give a very efficient integral over

the region of interpolated irradiance measurements.

Perhaps the most pragmatic option would be to have a separate sub-
surface scattering model for high-extinction media and apply a hybrid ap-
proach. While the required density of sample points increases with the
square of the extinction coefficient, the area of non-local reflectance contri-
butions reduces at the inverse rate. This makes it much more feasible to
dynamically generate irradiance samples in the neighbourhood of shaded
points based on a simple surface parameterisation. This approach would
set a general upper bound on the required sample point density, switch-
ing to the dynamic sampling model when the mean free path passes this
threshold.

6.1.4 Biophysical BSSRDF

To achieve realistic skin rendering a biophysically-based subsurface scat-
tering model must be used. This is implemented using Monte-Carlo meth-
ods to accurately simulate the complex layered structure of skin. Integra-
tion with a CUDA-based model[5] to generate tabulated BSSRDFs would

allow real-time rendering and parameter tuning of realistic skin models.
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6.1.5 Spectral Rendering

Spectral rendering is a primary feature of other renderers such as PBRT[12]
and Mitsuba[7] and is essential for photorealistic rendering of complex
materials. In these renderers, the sample format is extended to a fixed-
length array representing samples of the SPD over a fixed range of wave-
lengths.

This code transformation is trivial and functions efficiently on the CPU,
but introduces significant complexity for DXR. While typical operations in
spectral rendering are linearly independent, which is well-suited to paral-
lelisation, the SPD representations are too large to store in the RayPayload.
There are several potential ways to get around this limitation, with trade-
offs. An initial option is to store SPD samples in global resources while
raytracing is in flight. This would require minimal changes to the exist-
ing pipeline, but requires a very large resource allocation or a method of
allocating and reusing SPD buffers for active shader threads. Due to the
current implementation only using a single shader thread per path sam-
ple, this would also require iterating vertically through the SPD for vector
operations.The global memory overhead could be avoided by assigning
each shader thread a limited range of spectra to calculate. This could be
implemented by progressively accumulating different spectral ranges, or
the shader dispatch dimensions could be increased from 2 to 3. This would
increase the total number of shader invocations but allow temporaries to
be stored in shader registers and the RayPayload, and also enable effi-
cient vector operations on the SPD components.

Finally, there is a possibility to use shader group shared memory to
great effect. If large enough, it could possibly store an entire SPD sample,
while also allowing a single shader thread to perform TraceRay queries
and propagate the results to the other shaders working on it.This is a hy-
pothetical feature with several avenues for exploration and will require

significant further research and development to bear fruit.
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