Open Access Te Herenga Waka-Victoria University of Wellington
Browse

The Isolation and Structure Elucidation of Secondary Metabolites from Tongan Marine Invertebrates

Download (5.5 MB)
thesis
posted on 2021-11-12, 15:12 authored by Woolner, Victoria Helen

During the course of this study, Tongan marine organisms were investigated for new secondary metabolites. A combination of reversed- and normal-phase chromatographic techniques and NMR spectroscopy was employed, to aid in the isolation and structure elucidation of the five known and four new compounds isolated in this study. A brief investigation into the antifungal activity of Tongan holothurian saponins was instigated in order to compare the activity against saponins isolated from the common New Zealand sea cucumber, Australostichopus mollis. A yeast-based chemical genetics study, determined the antifungal activity, for four partially purified Tongan holothurian extracts, against Saccharomyces cerevisiae, to be similar to neothyonidioside (44), a saponin from A. mollis. This result suggested the antifungal activity to be a common characteristic to sea cucumber saponins. Further interest in secondary metabolites from Tongan marine organisms led this study towards the investigation of Tongan marine sponges. Five sponges were selected for screening, and two chosen for further study which yielded five known compounds (51–53, 61, 62) and four new fascaplysin derivatives; 7-bromoreticulatine,10-bromo-6,7-dimethoxyhomofascaplysin C,10-bromo-6, 7-dimethoxyhomofascaplysin D, and 10-bromohomofascaplysin A (63–66, respectively). Although 63 and 66 are new members of the fascaplysin family solely due to the position of the bromine, it appears that bromination on the A-ring is comparatively rare, with only three of the 24 literature examples displaying A-ring bromination. On the other hand, 64 and 65 present a new sub-class of fascaplysin derivatives due to the presence of a dimethoxy functionality. Both 7-bromoreticulatine (63) and 10-bromohomofascaplysin A (66) were found to be potently cytotoxic in the HL-60 cell line, exhibiting IC50 values of 33.8 and 498 nM, respectively. 10-Bromo-6,7-dimethoxyhomofascaplysins C (64) and D (65) were significantly less cytotoxic with respective IC₅₀ values of 2.7 and 6.0 μΜ. (Abstract continues with diagrams).

History

Copyright Date

2012-01-01

Date of Award

2012-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Chemistry

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Northcote, Peter