Open Access Te Herenga Waka-Victoria University of Wellington
Browse

The Interrelationships between Faulting and Volcanism in the Okataina Volcanic Centre, New Zealand

Download (26.16 MB)
thesis
posted on 2021-11-03, 22:26 authored by Seebeck, Hannu

Continental rifts show close spatial relations between faulting and volcanism, however the interrelations between each process and their roles in the accommodation of regional extension are not well understood. The geometric and kinematic relations between an active silicic caldera complex and active faults in the upper 3-4 km of the crust (i.e. Taupo Rift) are investigated using regional gravity data, digital elevation models, outcrop mapping, seismic reflection lines, focal mechanisms and an historical account of the 1886 AD Tarawera eruption adjacent to, and within, the Okataina Volcanic Centre, New Zealand.The location and geometry of the Okataina Caldera were influenced by pre-existing faults. The caldera is elongate north-south, has a maximum subsidence of 3 +/- 0.5 km at the rift axis and occupies a 10 km hard-linked left step in the rift. The principal rift faults (55-75 degrees dip) define the location and geometry of the northwest and southeast margins and locally accommodate piecemeal caldera collapse. Segments of the east and west margins of the caldera margin are near vertical (70-90 degrees dip), trend north-south, and are inferred to be faults formed by the reactivation of a pervasive Mesozoic basement fabric (i.e. bedding, terrane boundaries, and/or faults). Measured displacements along the Paeroa and Whirinaki Fault zones in, and adjacent to, the Okataina Volcanic Centre took place over time periods ranging from 60 to 220 ka (together with historical accounts of the 1886 AD Tarawera eruption). These indicate that neither dike intrusion nor caldera collapse have a measurable influence on fault displacement rates outside the volcanic complex. Within the volcanic complex, vertical displacement along the Whirinaki Fault zone increases by up to 50% between the caldera topographic margin and inner collapse boundary. This increase in vertical displacement is predominantly due to the collapse of the caldera 60 ka ago. In the Okataina Volcanic Centre, extension is accommodated by a combination of tectonic faulting, dike intrusion, and gravitational caldera collapse. Gravitational caldera collapse is however, superimposed on regional extension without contributing to it. Rift-orthogonal extension dominates across the Taupo Rift with a minor (

History

Copyright Date

2008-01-01

Date of Award

2008-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Geology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Geography, Environment and Earth Sciences

Advisors

Stern, Tim; Nicol, Andrew