The Electrical Conductivity of Some Hydrous and Anhydrous Molten Silicates as a Function of Temperature and Pressure
This thesis is concerned with the measurement and interpretation of electrical conductivity in molten silicates. Physicochemical properties and structural models of silica and silicates are reviewed first, to give a general picture of their behaviour. Electrical conductivity was measured as a function of temperature, pressure and water composition. To make these measurements an internally heated pressure vessel, designed to operate at temperatures up to 1200 degrees C and pressures up to 5 kbars was constructed. Conductivity measurements were made on the following anhydrous and hydrous silicate melts: SiO2/Na2O 60/40, 65/35, 75/25, 78/22 mol%; SiO2/Na2O/CaO 72/24/4 mol%; Mt. Erebus lava; SiO2/Na2O 78/22 mol% + ~5 wt% H2O and Mt. Erebus lava + ~4 wt% H2O in the temperature range 850-1000 degrees C and the pressure range 0-1.3 kbar. Arrhenius temperature and pressure dependencies on conductivity were observed. The pressure coefficient of conductivity was zero for the anhydrous melts well above Tg but small and positive for the hydrous silicates. Water caused ~40% reduction in conductivity when added to a melt which was accounted for in terms of the mixed alkali effect. Conductivity isobars for the hydrous silicates passed through a maximum as a function of increasing temperature. The conductivity behaviour as a function of temperature and pressure is analogous to that observed in partially ionised liquids and is intrepretated in an identical way. The range of operation of a piezoelectric alpha-quartz crystal viscometer was extended to allow measurement of viscosity as a function of temperature.