Synthesis of Highly Functionalised Furo[3,4-b]pyrans: Towards the Fungal Metabolite (−)-TAN-2483B
Carbohydrate-derived cyclopropanes combine both the stereochemical wealth of carbohydrates and the reactivity of cyclopropanes. A diverse variety of reaction modes for these cyclopropyl carbohydrates can be harnessed for the synthesis of natural products and other targets. The natural products (−)-TAN-2483A and (−)-TAN-2483B are fungal secondary metabolites displaying a variety of bioactivities such as inhibition of c-src kinase action and parathyroid hormone-induced bone resorption. This thesis described several synthetic approaches to the natural product (−)-TAN-2483B and analogues of (−)-TAN-2483B employing cyclopropane ring expansion. The synthetic route to (−)-TAN-2483B began with the readily available substrate D-mannose. The pyran ring unsaturation of the natural product was established by a cyclopropanation-ring expansion sequence. A synthetic strategy via dichlorocyclopropane-based intermediates is described in chapter 2. This being unsuccessful, an alternative approach via 2-fomyl-glycal was developed in chapter 3. The chapter 2 and 3 provided a solid background for the achievement of the analogues synthesis illustrated in chapter 4 via dibromocyclopropane. Lewis acid-mediated alkynylation followed by Pdcatalysed carbonylative lactonisation was successfully utilised in the revelation of the furo[3,4-b]pyran ring skeleton. This route afforded analogues of TAN-2483B; the Z-and E-unsaturated ethyl esters 140 and 141 and hydroxy(−)-TAN-2483B 145. The total synthesis of (−)-TAN-2483B was not achieved due to unforeseen obstacles encountered in the deoxygenation of the side arm of 335 (Chapter 4) into the E-propenyl side arm of (−)-TAN-2483B.