<p>The variable β-diketiminate ligand poses as a suitable chemical environment to explore unknown reactivity and functionality of metal centres. Variants on the β-diketiminate ligand can provide appropriate steric and electronic stabilization to synthesize a range of β-diketiminate group 12 metal complexes. This project aimed to explore various β-diketiminate ligands as appropriate ancillary ligands to derivatise group 12 element complexes and investigate their reactivity. A β-diketiminato-mercury(II) chloride, [o-C₆H₄{C(CH₃)=N-2,6- iPr₂C₆H₃}{NH(2,6- iPr₂C₆H₃)}]HgCl, was synthesized by addition of [o-C₆H₄{C(CH₃)=N-2,6- iPr₂C₆H₃}{NH(2,6- iPr₂C₆H₃)}]Li to mercury dichloride. Attempts to derivatise the β-diketiminato-mercury(II) chloride using salt metathesis reactions were unsuccessful with only β-diketiminate ligand degradation products being observed in the ¹H NMR. A β-diketiminato-cadmium chloride, [CH{(CH₃)CN-2,6-iPr₂C₆H₃}₂]CdCl, was derivatized to a β-diketiminato-cadmium phosphanide, [CH{(CH₃)CN-2,6-iPr₂C₆H₃}₂]Cd P(C₆H₁₁)₂, via a lithium dicyclohexyl phosphanide and a novel β-diketiminato-cadmium hydride, [CH{(CH₃)CN-2,6-iPr₂C₆H₃}₂]CdH, via Super Hydride. Initial reactivity studies of the novel cadmium hydride with various carbodiimides yielded a β-diketiminato-homonuclear cadmium-cadmium dimer, [CH{(CH₃)CN-2,6-iPr₂C₆H₃}₂Cd]₂, which formed via catalytic reduction of the cadmium hydride. Attempts to synthesize an amidinate insertion product via a salt metathesis reaction or a ligand exchange reaction proved unsuccessful but a novel cadmium amidinate, [{CH(N-C₆H₁₁)₂}₂{CH(N-C₆H₁₁)(N(H)-C₆H₁₁)}Cd], was synthesized from addition of dicyclohexyl formamidine to bis-hexamethyldisilazane cadmium. A β-diketiminato-zinc(II) bromide, [o-C₆H₄{C(CH₃)=N-2,6- iPr₂C₆H₃}{NH(2,6- iPr₂C₆H₃)}]ZnBr, was synthesized by addition of [o-C₆H₄{C(CH₃)=N-2,6- iPr₂C₆H₃}{NH(2,6- iPr₂C₆H₃)}]Li to zinc dibromide. The β-diketiminato-zinc(II) bromide was derivatized to a variety of complexes (including amides and phosphanides) by a salt metathesis reaction. Chalcogen addition reactions were performed from [o-C₆H₄{C(CH₃)=N-2,6-iPr₂C₆H₃}{NH(2,6-iPr₂C₆H₃)}ZnP(C₆H₁₁)₂] to produce double addition products from sulfur, selenium and tellurium. Chalcogen addition reactions from [o-C₆H₄{C(CH₃)=N-2,6-iPr₂C₆H₃}{NH(2,6-iPr₂C₆H₃)}ZnP(C₆H₅)₂] produced a double addition product for selenium and a β-diketiminato-zinc(II) tellunoite bridged dimer, [o-C₆H₄{C(CH₃)=N-2,6-iPr₂C₆H₃}{NH(2,6-iPr₂C₆H₃)}Zn]Te, from tellurium. A total of 14 compounds were characterized via X-ray diffraction. Photoluminescence studies of the β-diketiminato-zinc(II) compounds were conducted where it was proposed that an electron transfer from the lone pair on the hetero-atom influenced the quantum yield and fluorescence intensities.</p>
History
Copyright Date
2016-01-01
Date of Award
2016-01-01
Publisher
Te Herenga Waka—Victoria University of Wellington
Rights License
Author Retains Copyright
Degree Discipline
Chemistry
Degree Grantor
Te Herenga Waka—Victoria University of Wellington
Degree Level
Masters
Degree Name
Master of Science
ANZSRC Type Of Activity code
970103 Expanding Knowledge in the Chemical Sciences