thesis_access.pdf (56.88 MB)
Download file

Subglacial Conditions of the Kamb Ice Stream and its Response to Environmental Change

Download (56.88 MB)
posted on 08.12.2021, 21:45 by Laurine van Haastrecht

The Siple Coast ice streams, which drain the West Antarctic Ice Sheet into the Ross Ice Shelf, are susceptible to temporal changes in flow dynamics. The Kamb Ice Stream on the Siple Coast, stagnated approximately 160 years ago, thought to partially be the result of basal water diversion. The character of its subglacial environment can exert an important control on long- and short-term ice sheet and ice stream fluctuations. Were the Kamb Ice Stream to reactivate in response to subglacial or future climate change, it would have the potential to contribute more substantially to ice discharge into the Ross Ice Shelf. Therefore, it is important to characterise the present-day subglacial environment and climatic conditions that may reactivate this flow. This study investigates the present-day subglacial conditions of the Kamb Ice Stream and how these conditions may be affected by environmental perturbations. Due to the difficult nature of making direct observations of ice sheet basal conditions, other methods are employed to investigate the response of the Kamb Ice Stream to environmental change. Active source seismic surveying data obtained during the 2015/16 and 2018/19 austral summer seasons provides an instantaneous snapshot of the present-day basal conditions. Flowline and whole-continent numerical ice sheet modelling is used to investigate the longer-term response of the Kamb Ice Stream and the West Antarctic Ice Sheet. Amplitude analysis of seismic lines indicate saturated till beneath the Ross Ice Shelf in the vicinity of the grounding zone, which is supported by retreat rates of the Kamb Ice Stream grounding zone post-stagnation. Seismic reflection imaging suggests potential dewatered till conditions beneath the grounded Kamb Ice Stream. Flowline modelling of the Kamb Ice Stream indicates that changes to the water content of the subglacial sediments appear to be self regulating, with high reversibility over centennial timescales. Oceanic temperature forcings are the key driver of change of the Kamb Ice Stream, and the ice stream is susceptible to topographic pinning points in 2D and lateral drag. Future glaciological change is more likely to occur in response to oceanic than to atmospheric temperature perturbations. Results from 3D continent-wide modelling experiments also find that precipitation increases offset the effect of air temperature perturbations and influence subglacial conditions, indicating more dynamic ice stream behaviour on the Siple Coast. This study has worked to re-enforce and strengthen our existing understanding of the Kamb Ice Stream and its sensitivity to environmental change. Future work using higher-resolution simulations and a higher density of observational data may help refine these results.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline


Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Doctor of Philosophy

Victoria University of Wellington Unit

Antarctic Research Centre

ANZSRC Type Of Activity code


Victoria University of Wellington Item Type

Awarded Doctoral Thesis



Victoria University of Wellington School

School of Geography, Environment and Earth Sciences


Golledge, Nicholas; Horgan, Huw