Speciation in the Cladophorales species flock of ancient Lake Baikal
Understanding speciation is one of the great challenges in evolutionary biology as many of the processes involved in speciation, as well as the forces leading to morphological and genetic differentiation, are not fully understood. Three main modes of speciation have been described: allopatric, parapatric and sympatric. Sympatric speciation is the most enigmatic mode because in the absence of physical barriers, disruptive selection, assortative mating and hybridization play central roles in reproductive isolation. Although it is accepted that sympatric speciation is possible, only a few examples of this process exist to date. Another common method of speciation in plants and algae is via polyploidization. Recently, a promising system to study speciation in sympatry was discovered: the endemic Cladophorales species flock in ancient Lake Baikal, Russia. The flock consists of sixteen taxa grouped in four genera: Chaetocladiella, Chaetomorpha, Cladophora and Gemmiphora. In spite of their morphological diversity, recent molecular analyses have shown that this is a monophyletic group with low genetic variation and nested within the morphologically simple genus Rhizoclonium. Due to their high number of species, endemism and sympatric distribution, many interesting questions have arisen such as what processes are involved in speciation, and whether this group might be a novel example of sympatric speciation. In this study, we analysed the population genetics of the endemic Baikalian Cladophorales to infer the processes shaping the evolution of the group. First, a set of microsatellites was designed using high-throughput sequencing data. Second, species delimitation methods based on genetic clustering were performed. Third, the population genetics of three widely distributed species was analysed looking for evidence of panmixia, a common criteria to support sympatric speciation. A total of 11 microsatellites that mostly cross-amplify between most species were obtained. The genotyping revealed that most loci had more than two alleles per individual indicating polyploidy. As such, the analyses required a different approach which consisted in coding the genotypes as ‘allelic phenotypes’, allowing the use of individuals of different ploidy levels in the same data set. The species delimitation of 15 operative morphotaxa and 727 individuals supported reproductive isolation of five morphotaxa and two hypotheses of conspecificity. However, some morphotaxa showed unclear assignments revealing the need of further research to clarify their reproductive limits. Finally, the population genetics of Chaetomorpha moniliformis, Cladophora compacta and Cl. kursanovii revealed patterns of genetic variation and structure that suggest different reproductive strategies and dispersal abilities. This demonstrates that contrasting biological characteristics may arise in closely related lineages: Chaetomorpha moniliformis with dominant asexual reproduction and long dispersal abilities; Cladophora compacta with high genetic diversity, no population structure and likely to reproduce sexually; Cl. kursanovii with a structure congruent with geographic distribution and more restricted dispersal. The results suggest that polyploidy, rather than speciation with gene flow, is the force driving the reproductive isolation and evolution of this flock. Although many questions remain to be studied, this research provides the first insights into the diversification of this Cladophorales species flock and contributes to the understanding of speciation in freshwater algae.