thesis_access.pdf (6.5 MB)
Download file

Properties of Single Walled  Carbon Nanotube Films

Download (6.5 MB)
thesis
posted on 10.11.2021, 09:22 authored by Ravi, Shrividya

The preparation and physical properties of transparent, single-walled carbon nanotube (SWNT) networks fabricated from a novel, organic dispersion are described here for the first time. Characterisation of SWNT dispersions uncovered shifts in the radial breathing modes as a function of aggregation. These modes were redshifted in centrifuged butylamine dispersions by ~3cm -1. SWNT films cast using a simple, drop-deposition technique were annealed at 300'C after fabrication to remove solvent and surfactant residue. Annealed films with a sheet resistance of magnitude ~10 4 kOhms/square and transparency of ~85 % were fabricated in this study. The optoelectronic properties showed some inconsistency due to varying levels of oxygen doping and film thickness. Thin films annealed at 500'C were found to be preferentially depleted of nanotubes with high chiral angle and small diameter. Oxidative effects were also observed upon annealing at temperatures as low as 300'C. However, the reasons for this premature combustion are as yet uncertain. Temperature-dependent conduction studies revealed that the removal of adsorbed surfactant considerably reduced tunnelling barriers in annealed films. The dominant conduction mechanism in both unannealed and annealed films was found to be 3D variable range hopping. In the annealed films, a high temperature activation regime (with activation energy of 220 meV) was observed above 225 K. This regime is due to thermal activation over Schottky barriers within the nanotube network or electron activation over the pseudogap in armchair tubes.

History

Copyright Date

01/01/2008

Date of Award

01/01/2008

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Physics

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Kaiser, Alan; Bumby, Chris