Prefabricated Futures: Adaptable and productive construction methods for New Zealand dwellings
The traditional construction method of the New Zealand home has remained largely unchanged over the last century. These housing solutions that have supported our nation no longer suffice and the ‘young home owner’ is becoming a distant dream. New Zealand needs homes, and fast. Specialised trades create fragmentation in construction. This results in inefficient processes that divide the stages of constructing a home. What lacks in these instances is accessibility to design. Architects tend to focus on one-off, bespoke builds, whilst transportable home companies create generic, minimum spec designs. It can be argued that current prefabricated solutions are not complete, requiring sub-trades and work onsite that causes delays and construction related setbacks. Investigation into a key historic precedent has driven this research. This demonstrates that attempts have been made to change the housing model in New Zealand with some success. The precedent aligns with past notions in considering core parts of the home as products. This can create efficiencies in construction. The current demand for housing provides the perfect opportunity to reboot the method in which we build. This thesis questions how offsite panel assemblies can create a complete prefabricated housing product and improve construction efficiencies. This will still offer architectural choice. BIM (Building Information Modelling) and parameter driven design are used as a vehicle to demonstrate how more efficient, more collaborative and more controlled design approaches can be developed in order to create a complete construction package. Design-led research involving constant scale model testing and development led to my prefabricated wall panel design. Named the LapLock panel, I have developed a complete wall, floor and roof panel product system. Designed to be fully fabricated from structure to claddings and services in factory. This produces ruthless efficiencies onsite. The work utilises BIM in the form of Revit and takes advantage of parameter driven families to allow for fast manipulation and output of drawings for panels. A constant conversation between analogue and digital tools (in the form of physical scale models and Revit) strengthened the understandings of the limitations throughout the research. This thesis offers a new way of considering how New Zealand builds homes. By introducing adaptable and efficient panels that are complete on arrival to site, the Laplock solution provides accessible architectural choice to clients. This future-proofs the construction of the New Zealand home.