Open Access Te Herenga Waka-Victoria University of Wellington
thesis_access.pdf (7.97 MB)

Population dynamics and pathogens of the invasive yellow crazy ant (Anoplolepis gracilipes) in Arnhem Land, Australia

Download (7.97 MB)
posted on 2021-11-15, 15:33 authored by Cooling, Meghan Dawn

Though many populations of introduced species have been observed to collapse, the reasons behind these declines are seldom investigated. Anoplolepis gracilipes is considered among one of the top six most economically and ecologically damaging invasive ant species in the world. However, introduced populations of A. gracilipes have been observed to decline. My overall aims in this thesis were to document A. gracilipes population declines, to investigate the possibility that pathogens were playing a role in the observed population declines, and to identify putative pathogens infecting A. gracilipes as potential candidates for biocontrol agents.  I documented the observed A. gracilipes population declines that were the driving force for this project. I detailed large-scale reductions in the spatial extent of four populations with before and after survey data. I also presented data on three populations that were recorded as present, but disappeared before they could be spatially delimited. I speculated on the possible reasons for these declines and explained why I do not think other explanations are likely. I then investigated the hypothesis that a pathogen or parasite is affecting A. gracilipes queens in declining Arnhem Land populations. I did this in three ways: 1) based on preliminary findings, I looked at the effect of an artificial fungal infection on A. gracilipes reproduction. I compared reproductive output between control colonies and those treated with either a fungal entomopathogen (Metarhizium anisopliae) or fungicidal antibiotics. There was no correlation between either treatment and the number of eggs, larvae, pupae or males a colony produced after 70 days. I found queen number had no effect on colony reproductive output, suggesting that queens are able to adjust their egg-laying rate in the presence of other queens. I found no evidence that M. anisopliae affected reproductive output at the tested concentrations; 2) I explored the hypothesis that a pathogen that kills or affects the reproductive output of A. gracilipes queens is the mechanism or reason behind the population declines. I measured queen number per nest, egg-laying rate, fecundity and fat content and compared them between sites in different stages of decline or expansion (population types, consisting of low, medium and high-density populations). I discovered that 23% of queens had melanized nodules, a cellular immune response in insects, in their ovaries or fat bodies. The presence of nodules was correlated with a 22% decrease in the number of oocytes per ovary; however, nodule presence was not associated with population type, suggesting that though there are clearly pathogens or parasites capable of penetrating the cuticle of A. gracilipes, they are unlikely to be responsible for the observed population declines; 3) I compared microbial communities (bacteria and viruses) between queens from different population types. I found viral sequences that match to the Dicistroviridae family of viruses in low and medium-density populations. I found no differences in bacterial community structure between population types. The presence of sequences similar to the entomopathogens Rhabdochlamydia and Serratia marcescens, as well as the reproductive parasite Cardinium in A. gracilipes, deserves further investigation.  Though introduced species’ populations have been observed to decline, this is one of the first studies to quantitatively examine, document, and investigate a mechanism behind such a decline. Understanding the mechanisms by which an invader declines may have important implications for invasive ant management worldwide.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Ecology and Biodiversity

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Doctor of Philosophy

ANZSRC Type Of Activity code

970106 Expanding Knowledge in the Biological Sciences

Victoria University of Wellington Item Type

Awarded Doctoral Thesis



Victoria University of Wellington School

School of Biological Sciences


Lester, Phil; Hoffmann, Ben