posted on 2021-11-10, 03:59authored byCrook, Deborah
<p>In this work, we examine the polynomial invariants of the special Euclidean group in three dimensions, SE(3), in its action on multiple screw systems. We look at the problem of finding generating sets for these invariant subalgebras, and also briefly describe the invariants for the standard actions on R^n of both SE(3) and SO(3). The problem of the screw system action is then approached using SAGBI basis techniques, which are used to find invariants for the translational subaction of SE(3), including a full basis in the one and two-screw cases. These are then compared to the known invariants of the rotational subaction. In the one and two-screw cases, we successfully derive a full basis for the SE(3) invariants, while in the three-screw case, we suggest some possible lines of approach.</p>
History
Copyright Date
2009-01-01
Date of Award
2009-01-01
Publisher
Te Herenga Waka—Victoria University of Wellington
Rights License
Author Retains Copyright
Degree Discipline
Mathematics
Degree Grantor
Te Herenga Waka—Victoria University of Wellington
Degree Level
Masters
Degree Name
Master of Science
Victoria University of Wellington Item Type
Awarded Research Masters Thesis
Language
en_NZ
Victoria University of Wellington School
School of Mathematics, Statistics and Operations Research