thesis_access.pdf (178.26 MB)
Download file

Modelling Pn Wave Speeds Beneath the Central North Island, New Zealand

Download (178.26 MB)
posted on 09.11.2021, 00:55 by Seward, Anya Mira

A new method of modelling Pn-wave speeds is created. The method allows the predominant wavelength features of P-wave speeds in the uppermost mantle to be modelled, as well as estimating values of mantle anisotropy and irregularities in the crust beneath stations, using least-square collocation. A combination of National Network seismometers, local volcanic seismic monitoring networks and temporary deployments are used to collect arrival times from local events, during the period of 1990-2006. The dataset consists of approximately 11200 Pn observations from 3000 local earthquakes at 91 seismograph sites. The resulting model shows distinct variations in uppermost mantle Pn velocities. Velocities of less than 7.5 km/s are found beneath the back-arc extension region of the Central Volcanic Region, and under the Taranaki Volcanic Region, indicating the presence of water and partial melt. The region to the east shows extremely high velocities of 8.3-8.5 km/s, where the P-waves are traveling within the subducting Pacific slab. Slightly lower than normal mantle velocities of 7.8-8.1 km/s are found in the western North Island, suggesting a soft mantle. Pn anisotropy estimates throughout the North Island show predominately trench parallel fast directions, ceasing to nulls in the west. Anisotropy measurements indicate the strain history of the mantle. For the observed upper mantle Pn velocity of 7.3 km/s is one of the lowest seen in the world. Ray-tracing modelling indicate that this region extends to depths of at least 65 km, suggesting an area of elevated heat (700 - 1100 degrees C) at Moho depth. Elevated temperatures can be caused by the presence partial melt (0.4 % to 2.1 % depending on the amount of water present). Beneath the western North Island, the observed slower than normal mantle velocities, indicate a material of lowered shear modulus, susceptible to strain deformation. However, anisotropy estimations in this region, show no significant anisotropy, suggesting that this is a region of young mantle that hasn't had time to take up the signature of deformation. These observations can be explained by a detachment of the mantle lithosphere through a Rayleigh-Taylor instability more than 5 Ma.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline


Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis



Victoria University of Wellington School

School of Geography, Environment and Earth Sciences


Stern, Tim; Smith, Euan