Open Access Te Herenga Waka-Victoria University of Wellington
Browse
- No file added yet -

Mechanisms in Carbon Nanotube Growth: Modelling and Molecular Dynamics Simulations

Download (2.9 MB)
thesis
posted on 2021-11-15, 02:39 authored by Schebarchov, Dmitri

A selection of nanoscale processes is studied theoretically, with the aim of identifying themechanisms that could lead to selective carbon nanotube (CNT) growth. Only mechanisms relevant to catalytic chemical vapour deposition (CVD) are considered. The selected processes are analysed with classical molecular dynamics (MD) simulations and continuum modelling.

The melting and pre-melting behaviour of supported nickel catalyst particles is investigated. Favourable epitaxy between a nanoparticle and the substrate is shown to significantly raise themelting point of the particle. It is also demonstrated that substrate binding can induce solid-solid transformations, whilst the epitaxy may even determine the orientation of individual crystal planes in supported catalysts. These findings suggest that the substrate crystal structure alone can potentially be used to manipulate the properties of catalyst particles and, hence, influence the structure of CNTs.

The first attempt at modelling catalyst dewetting, a process where the catalyst unbinds from the inner walls of a nucleating nanotube, is presented. It is argued that understanding this process and gaining control over itmay lead to better selectivity in CNT growth. Two mutually exclusive dewetting mechanisms, namely cap lift-off and capillary withdrawal, are identified and then modelled as elastocapillary phenomena. The modelling yields an upper bound on the diameter of CNTs that can stem from a catalyst particle of a given size. It is also demonstrated that cap lift-off is sensitive to cap topology, suggesting that it may be possible to link catalyst characteristics to the structural properties of nucleating CNTs. However, a clear link to the chiral vector remains elusive.

It is shown that particle size, as well as binding affinity, plays a critical role in capillary absorption and withdrawal of catalyst nanoparticles. This size dependence is explored in detail, revealing interesting ramifications to the statics and dynamics of capillary-driven flows at the nanoscale. The findings bear significant implications for our understanding of CNT growth from catalyst particles, whilst also suggesting new nanofluidic applications and methods for fabricating composite metal-CNT materials.

History

Copyright Date

2010-01-01

Date of Award

2010-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Physics

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Hendy, Shaun