Open Access Te Herenga Waka-Victoria University of Wellington
thesis_access.pdf (3.07 MB)

Isotope geochemistry of gallium in hydrothermal systems

Download (3.07 MB)
posted on 2021-11-16, 03:23 authored by Payne, Constance E.

Little is known about the isotope geochemistry of gallium in natural systems (Groot, 2009), with most information being limited to very early studies of gallium isotopes in extra-terrestrial samples (Aston, 1935; De Laeter, 1972; Inghram et al., 1948; Machlan et al., 1986). This study is designed as a reconnaissance for gallium isotope geochemistry in hydrothermal systems of New Zealand. Gallium has two stable isotopes, ⁶⁹Ga and ⁷¹Ga, and only one oxidation state, Ga³⁺, in aqueous media (Kloo et al., 2002). This means that fractionation of gallium isotopes should not be effected by redox reactions. Therefore the physical processes that occur during phase changes of hydrothermal fluids (i.e. flashing of fluids to vapour phase and residual liquid phase) and mineralisation of hydrothermal precipitates (i.e. precipitation and ligand exchange) can be followed by studying the isotopes of gallium. A gallium anomaly is known to be associated with some hydrothermal processes as shown by the unusual, elevated concentrations (e.g. 290 ppm in sulfide samples of Waiotapu; this study) in several of the active geothermal systems in New Zealand.  The gallium isotope system has not yet been investigated since the revolution of high precision isotopic ratio measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and so a new analytical methodology needed to be established. Any isotopic analysis of multi-isotope elements must satisfy a number of requirements in order for results to be both reliable and meaningful. Most importantly, the analysis must represent the true isotopic composition of the sample. Ion-exchange chromatography is generally utilised to purify samples for analysis by MC-ICPMS and exclude potential mass interfering elements but care must also be taken to recover as close to 100% of the element of interest as possible, as column chromatography can often result in fractionation of isotopes (Albarède and Beard, 2004).  An ion exchange column chromatography methodology for the separation of gallium based on earlier work by Strelow and associates (Strelow, 1980a, b; Strelow and van der Walt, 1987; Strelow et al., 1974; van der Walt and Strelow, 1983) has been developed to ensure a quantitative and clean separation from the majority of elements commonly associated with hydrothermal precipitates and waters (i.e. As, Sb, Mo, Hg, W, Tl, Fe and other transition metals). A protocol to measure the isotopes of Ga was developed by the adaptation of methods used for other stable isotope systems using the Nu Plasma MC-ICPMS at the School of Geography, Environment and Earth Sciences, Victoria University of Wellington, NZ.  Gallium isotopic ratios have been collected for a suite of samples representing the migration of hydrothermal fluids from deep fluids in geothermal reservoirs to the surface expression of hot spring waters and associated precipitates in hydrothermal systems. A range in δ⁷¹GaSRM994 values is observed in samples from Taupo Volcanic Zone geothermal fields from -5.49‰ to +2.65‰ in silica sinter, sulfide, mud and brine samples. Mineral samples from Tsumeb and Kipushi mines range from -11.92‰ to +2.58‰ δ⁷¹GaSRM994. Two rock standards, BHVO-2 and JR-2 were also analysed for gallium isotopes with δ⁷¹GaSRM994 values of -0.92‰ ±0.12‰ and -1.91‰ ±0.23‰ respectively.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline


Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Master of Science

ANZSRC Type Of Activity code

970104 Expanding Knowledge in the Earth Sciences

Victoria University of Wellington Item Type

Awarded Research Masters Thesis



Victoria University of Wellington School

School of Geography, Environment and Earth Sciences


Seward, Terry M.