Open Access Te Herenga Waka-Victoria University of Wellington
thesis_access.pdf (3.47 MB)

In Vitro and in Vivo Characterisation of P. Aeruginosa Oxidoreductase Enzymes in Pathogenesis and Therapy

Download (3.47 MB)
posted on 2021-11-12, 19:31 authored by Green, Laura Kay

Pseudomonas aeruginosa, an increasingly multi-drug resistant human pathogen, is now one of the top three causes of opportunistic infection and there is much interest in identifying novel therapeutic targets for treatment. As a bacterial pathogen, P. aeruginosa encounters innate immune system defences and must continue to adapt to its defence strategies to accommodate the ever-changing environment. Though P. aeruginosa virulence determinants have been heavily characterised over the last several decades, most recent work acknowledges the complex interaction between the human host and the pathogen as an on-going dialogue of virulence factors adapting to the continuum that is the immune response. A major challenge that P. aeruginosa must overcome are reactive oxygen species (ROS) that are released at all stages of infection. Based on previous work which demonstrated a role for soluble nitro- and quinone oxidoreductase (NQOR) enzymes in protecting a related bacterium (Pseudomonas putida) from oxidative stress, we hypothesized that P. aeruginosa would similarly utilize NQORs to withstand ROS. This thesis seeks to understand the role of ROS-protecting enzymes in pathogenesis as well as their potential applications in a therapeutic context. Several NQORs of P. aeruginosa were identified to possess biochemical characteristics consistent with the enzymatic capacity to indirectly reduce reactive species like H₂O₂. However, when individual genes encoding NQORs were deleted from P. aeruginosa, no apparent H₂O₂ sensitivity was seen. In contrast, when candidate genes were over-expressed, certain NQOR enzymes conferred the ability to tolerate H₂O₂ challenge at low concentrations; indicating that these NQORs may play a protective role whose effects are masked in vitro by genetic redundancy as well as a highly active endogenous catalase. By developing a novel in vivo cell culture infection model, the survival of P. aeruginosa post exposure to immunocompetent murine macrophages was also assessed. This not only demonstrated that several putative NQORs were activated in the presence of macrophages but also that an in vivo modelling system is likely to be more appropriate for discovering virulence determinants. In a different aspect of this study it was investigated whether the reductive capacity of the P. aeruginosa-derived NQORs might hold potential for gene-directed enzyme-prodrug therapy (GDEPT). Prodrugs, such as 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) or the nitro-chloromethyl benzindoline SN 26438, are nontoxic in their native form, but become highly toxic upon reduction of their nitro functional groups. The P. aeruginosa NQORs, were tested to identify enzymes capable of efficient activation of CB1954 or SN 26438. Although none of these enzymes exhibited greater activity with CB1954 than the “best in class” Eschericha coli enzymes NfsA or NfsB, the P. aeruginosa NfsB orthologue (PA5190) demonstrated greater than 20-fold improved activity over NfsB from Escherichia coli in its ability to sensitise human cells to SN 26438. This finding offers promise for development of PA5190 and SN 26438 as a novel enzyme-prodrug paradigm for GDEPT.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Cell and Molecular Bioscience

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis



Victoria University of Wellington School

School of Biological Sciences


Ackerley, David; La Flamme, Anne