Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (2.28 MB)

Impact of lowered pH on the morphological, physiological, and microbial community composition of the temperate calcareous sponge, Grantia sp.

Download (2.28 MB)
thesis
posted on 2022-06-27, 04:57 authored by McCullough, Alice

Global atmospheric carbon dioxide (CO₂) concentrations have been increasing at unprecedented rates since the industrial revolution. The ocean has been acting as a buffer, absorbing CO₂, resulting in rising sea temperature (ocean warming; OW) and lowering its pH (ocean acidification; OA). OA is known to cause reductions in the calcification rates of marine calcifiers, resulting in dissolution of calcium carbonate shells and skeletons. Sponges have important functional and structural roles in marine ecosystems and there is some evidence to suggest that sponges may be “winners” under future ocean climate conditions due to their high level of resilience to OA and OW and the increased availability of space as a result of reductions in more sensitive calcifying species. Although this may be the case for those sponges with skeletons made up of siliceous spicules, little is known about how calcareous sponges, with calcite spicules, may react to OA conditions. This thesis addresses a knowledge gap on how temperate calcareous sponges may respond to OA using Grantia sp. as a model species. A twenty-eight-day experiment with three control (pH 8.0) tanks and three OA (based on IPCC (RCP8.5); pH 7.6) tanks was used to measure changes in sponge size, spicule size, spicule deformation, respiration rate and microbial community structure. I found no signs of corrosion or significant change in area of sponges, however, there was a significant 25% reduction in the spicule size under the projected climate change OA “worst case scenario” conditions, a sign that sponge growth was impacted under stressful external pressure. How this reduction is spicule size will impact the sponge is still unknown. Respiration rates of sponges were not significantly different between the control or treatment sponges, and the microbiome of control and OA sponges did not significantly differ, but they did change significantly over time (T0 compared to T28 (final day of the experiment). The microbiome over time changed with increasing abundance of microbes known to have a role in nutrient cycling and assisting in marine host’s acclimation to new niches with varied environmental conditions. My results suggest that while the physiology of Grantia sp. is not significantly affected by low pH conditions consistent with those predicted for 2100 under worst case climate scenarios, spicules were impacted with treatment sponges having smaller spicules. The consequences and mechanisms resulting in smaller spicules need further investigation. Overall, this study provides evidence that like many demosponges, calcareous sponges may have some resilience to OA impacts.

History

Copyright Date

2022-06-27

Date of Award

2022-06-27

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Marine Biology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

ANZSRC Socio-Economic Outcome code

190101 Climate change adaptation measures (excl. ecosystem)

ANZSRC Type Of Activity code

4 Experimental research

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Biological Sciences

Advisors

Bell, James