Immune Responses in Perforin Deficient Mice
Dendritic cells (DC) play a pivotal role in the initiation of T cell responses and earlier studies have shown that their survival is important for the generation of effective immune responses. Cytotoxic T lymphocytes (CTL) and natural killer T (NKT) cells have been proposed to regulate the survival of antigen presenting DC through their ability to kill cells expressing specific antigen via secretion of perforin, a protein contained in cytotoxic granules. Perforin knockout (PKO) mice generate amplified immune responses to DC immunization, suggesting a link between defective cytotoxicity and increased T cell responses. The studies in this thesis used PKO mice and in vivo models of CD8+T cells and NKT cell immune responses to determine whether CTL and NKT cells eliminate DC in a perforin-dependent manner, and whether DC elimination is a mechanism to regulate T cell responses. During a primary influenza infection C57BL/6 and PKO mice generated a similar influenza specific CD8+ immune response. No significant difference in the percentage of influenza epitope PA224-233 specific T cells was observed between C57BL/6 and PKO mice during a secondary influenza infection, but PKO mice had a significantly reduced T cell response directed towards the dominant influenza epitope, NP366-374. The reduced T cell response in PKO mice was not due to differences in activation or differentiation status of specific T cells compared to C57BL/6 mice. Therefore, the extended DC survival in PKO after secondary influenza viral infection, recently reported by other authors, does not appear to correlate with increased expansion of virus specific CD8+T cells in infected mice. The role of NKT cells in DC elimination was assessed in vivo using the NKT cell ligand a-Galactosylceramide (a-GalCer). Injection of a-GalCer in C57BL/6 mice induced a dramatic decline in the number of splenic CD8+DC. A similar decrease in CD8+DC numbers was observed in PKO mice, suggesting that the mechanism of DC loss did not involve perforinmediated killing. In contrast, treatment with a TNF-a neutralizing antibody substantially reduced the decline in CD8+DC numbers. This reduction in splenic CD8+DC occurred as early as 15 hr after a-GalCer treatment, and did not affect generation of CD8+T cell responses or the ability of a-GalCer treatment to provide tumour protection. Taken together, these results suggest that multiple cells and mechanisms can regulate DC survival in vivo. CTL regulate DC survival in vivo in a perforin-dependent manner, but this does not necessarily affect the magnitude of the resulting immune responses. NKT cells also affect the survival of DC in vivo, but in a perforin-independent, cytokine-dependent manner. These findings provide additional knowledge about the in vivo involvement of perforin in regulating DC survival by CTL and NKT cells and the effects this has on T cell responses.