Open Access Te Herenga Waka-Victoria University of Wellington
thesis_access.pdf (45.14 MB)

Holding Still

Download (45.14 MB)
posted on 2023-05-09, 02:08 authored by Jacob Marsh

Magnetic resonance imaging (MRI) uses powerful magnets to create images of the human body which are widely used in medical practice as they have shown to be invaluable for guiding and monitoring interventional surgical procedures. Despite the use of this medical technology, MRI scanners are currently limited as being large, expensive, and fixed. Patients being situated inside a closed MRI system have to remain motionless in a prone position for an extended period of time which can be a significant obstacle in obtaining MRI scans. To ensure that the patient remains still, the head is often pinned in a head holder which is often known to produce anxiety, claustrophobia and discomfort. There is a need for brain imaging technology that is more portable and less restricting than current MRI scanners. One way to address these issues is to decrease the size of the MRI magnet to make a head-only system.    

This study is part of a larger research project with leading experts  from multiple disciplines and institutions that focus on the technical development of the scanner. The project aim is to design, build, and validate the first-ever human MRI scanner requiring only the head to be inside the magnet bore, this allows the system to be portable and enables the patient to be situated in an upright position during the scanning process. This research occurred alongside the development of this system at the formative stage of the process.

The aim of this study was to develop the head support for a seated brain imaging magnet to minimises head movement during the procedure while enhancing the patient experience. A human-centered design methodology and a research through design process was used to create design prototypes. The final design is an inflatable pocket designed to decrease head movement when inflated, and it was found to evoke low levels of discomfort and anxiety. 


Copyright Date



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains All Rights

Degree Discipline

Industrial Design

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Master of Design Innovation

ANZSRC Socio-Economic Outcome code

970112 Expanding Knowledge in Built Environment and Design

ANZSRC Type Of Activity code

4 Experimental Development

Victoria University of Wellington Item Type

Awarded Research Masters Thesis



Victoria University of Wellington School

School of Design


Rodriguez Ramirez, Edgar