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Thesis abstract

Genome-wide association analyses (GWAS) studies based on frequentist statistics

have often proven ineffective in deriving biological insights from sequencing data.

These GWAS lack the machinery to safeguard against technical noise inherent to

high throughput sequencing platforms and are not conceptually designed for pro-

cessing large sets of high-dimensional genomic data. However, such shortcomings

are not peculiar to GWAS and have been studied in other fields of science, such

as signal processing and computer science, for a long time. In particular, machine

learning techniques, especially deep learning models, have proven highly successful

in dealing with noisy high-dimensional data. Recently it has been shown that these

techniques can be effective for handling genomic data even when directly transferred

from modern computer vision and natural language processing applications.

This thesis builds off the existing suites of such methodologies and presents a ro-

bust computational pipeline to functionally annotate whole-genome sequencing data.

Moreover, it discusses and presents a data solution to efficiently process the large,

heterogeneous datasets required for such analyses. The main objective of this thesis

is to put forward a solution to identify variants that modify disease-causing mu-

tations of complex heritable diseases. This is not a trivial problem given that the

current gold standard approach, GWAS methodology, suffers not only from the

drawbacks just described but is also underpowered by multiple testing (not useful

for rare diseases) and fails to account for the epistatic nature of genetic interactions

responsible for the onset and manifestation of complex diseases.
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Here, a set of cell-specific Gene Regulatory Networks (GRNs) inferred from dynamic

genomic data was constructed. Most attempts to construct GRNs delineating such

complex interactions relied on combining non-standardized high-throughput static

datasets that contained false positive interactions and missing data points with-

out insights into cell developmental states. To illuminate these intricate dynamic

regulatory interconnections of the genome, specific to a tissue or a cell type, the

Non-Stiff Dynamic Invertible Model of CO-Regulatory Networks (NS-DIMCORN)

that allows unrestricted neural network architectures (to accommodate arbitrary

depth increase for larger sets of genes) and training without partitioning the data

dimensions was developed. NS-DIMCORN was trained on not-homogenized bulk

tissue-specific RNA-seq and single-cell RNA-seq as a surrogate for cells’ continuous

developmental states and modeled these highly dynamic systems with a set of or-

dinary differential equations. NS-DIMCORN yielded a continuous-time invertible

generative model with unbiased density estimation only from RNA-seq read-count

data and allowed time-flexible sampling of each gene’s expression level for ab initio

assembly of genes regulatory network of specific cells.

Secondly, Precise Graph-based Genome-Wide Annotation Sofware (PG-GWAS) was

developed. For this purpose, embedding was used to map genomic variables to a

vector of continuous numbers. Thus, each genomic variant was assigned a unique

contextualized score that encoded the likelihood of effects on its respective gene

products. These scores were pan-genomic by constructing a k-mer representation of

all the haplotypes, independent of any “reference genome,” and were based only on

each variant’s evolutionary constraints. Next, a graph representation of individuals’

genomes was constructed that integrated genomic variation scores, tissue-specific

gene-gene interaction, and regulatory networks (assembled from GRNs) to allow the

study of the genomic variants in aggregate and accounting for epistasis. Utilizing the

Graph Attention mechanism identified these networks’ most critical interactions and
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allowed annotating the entire whole-genome graphs to determine the most prominent

genomic features (i.e., groups of interacting genes) within each genome that could

be responsible for different symptoms and onset in patients with the same disease-

causing mutations. Eventually, to demonstrate the efficacy of this approach, PG-

GWAS was tested on new sets of sequencing data, where the result improved in

standard GWAS and provided insight into disease epistasis.
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A primer on human genetics 17

1.1 A primer on human genetics

The entire genetic code of humans (the genome) of 32 00 000 000 nucleotides is

found in 23 separate linear molecules called DNA that are tightly packed in chro-

mosomes.1 Chromosomes comprise DNA wrapped in histones (chromatin) that are

methylated in specific places2. A nucleotide is the basic building block of DNA that

is attached to a phosphate group and a nitrogen-containing base, Adenine (A), Cy-

tosine (C), Guanine (G), or Thymine (T), where the order of these four nucleotides

determines the encoded message for making specific proteins3. The DNA code is

transcribed, where the genetic information stored in DNA is converted into an RNA

molecule, specifically messenger RNA (mRNA), encoding hundreds of thousands of

protein-specifying codes4. This system permutes three nucleotides at a time in the

mRNA to make a linear sequence of amino acids specifying codons. A decoding

system uses the 20 amino-acid-specific transfer RNAs (tRNAs)3. The latter have

base-pairing anticodons, one for each of the 20 amino acids, causing translation into

specific proteins of linear chains of amino acid residues4. Proteins perform essential

functions within organisms, including a plethora of enzyme activities, such as those

for DNA replication and RNA transcription, the respiratory cycle, and the gen-

eration of Adenosine triphosphate (ATP)3. They also provide structural elements

(e.g., collagen, ECM, microtubules, microfibrils) of various natures. But apart from

encoding proteins, certain RNA species may also be used as essential regulatory

elements such as miRNAs and long non-coding RNA (lncRNA)3. Intriguingly the

trillions of cells making up the human body each perform a different function at any

given time, entirely dependent on which genes are expressed and in what quantity5–7.

This intricate dynamic system is self-controlled through an exquisite regulatory sys-

tem of genes, cis-regulatory-element, and sets of trans-regulatory-elements such as

Transcription Factors (TFs), histone methylations, and de-methylations3. In this
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perfectly balanced system, any DNA sequence variation (genetic variant) can dras-

tically affect cell morphologies, development, or normal function and can contribute

directly or indirectly to diseases6. These variations can be at single loci genomic

positions, comprise longer nucleotide sequences, or include copy number variations,

translocations, and inversions.

1.1.1 DNA mutation and genetic variants

A Nucleotide Variant (NV), depending on its type (single nucleotide polymorphisms/

insertion-deletion) or its location (coding/non-coding region), can increase, reduce

or completely stop the expression of a gene or affect its downstream expression

(e.g. glycosylation, multimerization through sulfhydryl bonds, ionic and van der

Waals bridges, hydrophobic interactions), to affect protein folding to functional en-

tities3. In Single Nucleotide Polymorphisms (SNPs), only one nucleotide in DNA

base pairs is changed and there are several types of SNPs. A missense SNP may

occur in the protein-coding region of DNA and such a variation at a given locus

may result in coding different amino acids, eventually altering the properties of that

gene’s downstream mature protein products3. A nonsense SNP if produces a stop

codon, terminates protein synthesis prematurely and causes a loss of function in

that protein3. Insertion-Deletion (INDELs) involves adding or removing one or few

nucleotides into the DNA sequence, changing the gene’s reading frame during RNA

transcription3. Nucleotide variants in non-protein-coding regions can contribute to

irregular cell functions by impacting mRNA processing, chromatin interactions, and

DNA expression by altering transcription factor binding sites and lncRNA abnormal-

ities8. Effects of genetic variants are among the main considerations of inheritable

disease susceptibility, also called broad sense heritability (H2)9.
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1.1.2 Gene Regulatory Networks (GRNs)

Large numbers of genes work together as a highly interconnected dynamic system,

known as gene regulatory networks, to regulate and execute every cellular func-

tion in cells, such as differentiation, metabolism, the cell cycle, signal transduction,

and so on5. Although an oversimplification of the problem, GRNs are often mod-

eled by perturbations where a combination of two or a few genes are systematically

knocked out (removed) from the genome to investigate their contributory relation-

ship10. More recently, transcriptomic profiling of individual cells (single-cell DNA

sequencing) has allowed more realistic modeling of GRNs, by comparing gene ex-

pression in different cells at different developmental stages or under the effect of

different stressors11. Chapter 2 reviews various computational models developed for

GRN inference and analysis and presents novel tools to infer GRNs from single-cell

DNA sequencing (scRNA-seq) data.

1.1.3 Genetic architecture of diseases

Historically, heritable human diseases have been broadly classified as Mendelian

or complex disorders using oversimplified groupings/clustering of genes to explain

the underlying genetic architecture of diseases12. Genetic architecture describes all

attributes of genetic contributions to a given phenotype (e.g., disease symptoms),

such as genetic variants influencing the phenotype, their effect size, frequency, and

interactions with each other and the environment12. A disease is called Mendelian if

disease-causing genomic variants segregate according to Mendel’s inheritance laws.

These disorders are usually caused by rare genetic variations with high penetrance

(effect size) as they are negatively selected for in the population. A Mendelian

disease is termed monogenic if heritable Loss-of-Function (LoF) single variants (mu-

tations) are responsible for the observed phenotypic trait. A complex disease, by

contrast, does not follow Mendelian inheritance patterns and can result from any
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combination of multiple genetic factors or interactions of these factors. These dis-

eases are considered polygenic, a term conveying that many genetic variants con-

tribute to phenotypic variability observed in patients with the disease. However,

given the implications of highly interconnected GRNs, more recent studies have in-

troduced the concept of universal pleiotropy for complex symptoms of disease13–15.

Pleiotropy is when a location on the genome affects two or more unrelated pheno-

typic traits. In the contemporary era of disease etiology research, the complex and

highly comorbid symptoms of diseases are viewed as results of an omnigenic archi-

tecture, that is, every gene expressed in a cell relevant to the disease contributes to

the disease’s manifestation.16,17. In 2016, a novel genome sequencing analysis iden-

tified apparently healthy individuals (genetic superheroes) resilient to the effects of

LoF mutations that cause eight Mendelian diseases18.

1.1.4 Genome Wide Association Analyses

Genome Wide Association Analyses (GWAS) was developed as a new approach

based on the success of vast amounts of next-generation sequencing of individuals19.

GWAS is a technique that allows individuals’ entire genomes to be fine-mapped

readily on an unprecedented scale to a phenotype. Hence it allowed association by

statistical analysis to fine-grained phenotypes. A typical GWAS investigates the

association of genetic variation to the phenotype of interest with one or up to mil-

lion genetic markers. Frequency differences of these markers in healthy and affected

groups of individuals are compared to implicate their relationship to phenotypes.

Thus, for each genetic marker, one at a time, a linear regression model (logistic

regression model for binary phenotypes and linear regression for quantitive pheno-

types) is fitted to predict the target phenotype using influential genetic variants

and their covariates as input. The coefficient for the genetic variant term is then

tested for significance using statistical hypothesis tests such as the likelihood ratio

test or Wald’s test. However, unlike the extensive success of GWAS in implicating
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high penetrance disease-causing variants for diseases with monogenic and oligogenic

(phenotype as a result of few variants only) causes, there has been little success

in identifying the role of the numerous disease modifying variants or variants with

small effect sizes in heritable diseases19. Identifying modifiers is particularly difficult

since modifiers, unlike causal variants, are not necessarily rare, given that their ac-

tion is epistatic with the disease-causing gene. Epistasis is a phenomenon in which

the effect of a genetic variant is dependent on the presence or absence of other ge-

netic variations due to gene buffering and regulatory effects of part of the genome

on other parts. Shortcomings of GWAS are discussed in more detail in Chapter 3,

but briefly, these include the over-conservativeness of multiple testing correction,

ignorance of population stratification, the confounding effect of Linkage Disequilib-

rium (LD) between neighboring markers, arbitrary LoF scores, the inclusion of only

common variants, ignoring epistasis, and lastly the power reduction of some models

owing to over-fitting of linear regression for genetic markers separately.

1.1.5 Non-parametric tests and deep learning in genomics

Deep learning is now used extensively in genomics research as it can perform the

necessary dimensionality reduction required for dealing with high dimensional-omics

data, hence capturing the complex nature of biological functions for analysis20,21.

The input into a neural network, the main form of deep learning, is typically matrices

of vectorized values, and outcomes are predictions related to the input. In genomics,

this input can be a DNA/RNA sequence or -omics data after being processed into a

format that can be fed into neural networks (e.g., One-hot encoding22) for particular

conditions such as diseases or a phenotype. On the other hand, outputs can be

predictions about gene expression ratios, effects of genetic variations on a cellular

process, or disease manifestations. However, the pitfall of deep learning is the need

for a large amount of training data for models to learn how to predict the outcome

from the inputs. Such data are often scarce and sometimes not even available for
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many biological questions because there is no known answer or human recognizable

pattern that can use for labeling of the training data20.
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1.2 Thesis outline

1.2.1 Overview

Indeed, the main contribution of this thesis is not developing new deep learning algo-

rithms (although improved architectures were devised and distributed data pipelines

were developed to accommodate working with terabytes of genomic data) but is the

innovative agglomeration and transformation of biological data in a way that allows

utilizing state-of-the-art deep learning algorithms efficiently.

In Chapter 2, I used a flavor of the generative models23 to infer GRNs from single-

cell sequencing data. Single-cell sequencing data capture the ratio of each gene’s

expression in thousands of cells at different developmental stages. The rationale

for this choice was that generating single-cell sequencing data is unrestricted (one

can sequence many cells at different developmental stages), but labeling this data

(i.e., what are the most active genes in each cell at an exact time during a develop-

mental stage) is yet technically impossible24. Unsupervised learning methods such

as generative models have the potential to leverage these large pools of unlabeled

data (thousands of cells at many different developmental stages). Particularly for

this approach, a large amount of data is collected, and then the model is trained to

generate data like the input by trying to learn the input data distribution function.

More accurately, by training a neural network with significantly fewer parameters

than the data dimension, the generative model is forced to learn the essence of the

data to generate it efficiently.

In Chapter 3, Natural Language Processing (NLP) is utilized to capture the

deleterious effect of genetic variants. Although NLP has been used for predict-

ing consequences of genetic variants25, here, by representing whole genome DNA

sequences as a graph comprising the complete sets of possible combinations of nu-

cleotides, my contribution is looking at genetic variants, not in comparison to one
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reference genome or trying to predict their deleterious effects in isolation but in the

genome as a whole. Briefly, I assigned a predictive pan-genomic26, contextualized

(aware of variants before or after) meaning to each genetic variant that is quantifi-

able in the sense of deleterious effect on downstream products and is understandable

to a computer.

Thirdly, Graph Attention Network (GAT), a neural network architecture that

operates on graph-structured data, was used to combine information about a pan-

genomic score of genetic variants (nodes of the graph) and genetic interactions (edges

of the graph) to model omnigenic architecture of the Mendelian diseases with varying

complex symptoms as a result of genetic modifiers. My other notable contribution

here is an assembly of the whole genome as a graph. As a result, GAT can lever-

age masked self-attentional layers, which allow nodes of the graph to be weighted

depending on their importance (here, contribution to trait) and pool information

across the graph, allowing disease to be studied truly under the omnigenic paradigm.
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1.2.2 Aims

There are more than 6,000 Mendelian diseases for which there is no cure or effective

therapy27. These diseases were believed to be monogenic, i.e., caused by LoF mu-

tations in one gene. More than 4.2 million SNPs and INDELs have been identified

in the human genome, of which around 176 000 are predicted to result in LoF28–30.

However, recent large-scale sequencing and analyses of individuals have identified

genetic variants that modify the onset and manifestation of some Mendelian diseases

and, in some cases, buffer the deleterious effects of the responsible high penetrance

LoFs and confer resilience in some individuals. This outcome of accumulated re-

search further emphasizes the recent theoretical development in the modeling of

disease heritability, suggesting that all complex traits of heritable diseases result

from a sufficiently interconnected network of genes and hence share a single ‘om-

nigenic’ architecture. Consequently, the success of conventional GWAS (still the

most common method of studying disease heritability) though limited, is yet to be

matched in identifying variants that modify complex traits of Mendelian diseases19.

My aim in this thesis is to annotate whole-genome sequencing data functionally,

look at genomic variations in the aggregate, and investigate Mendelian diseases with

complex onset and manifestation under the monogenetic paradigm. Therefore

1. I aim to construct an accurate GRN that encapsulates all relevant pairwise

cis- and trans-regulatory interactions31 in a genome, hence allowing epistasis

modeling.

2. I aim to develop a tool for precise annotation of the whole genome that is the

limiting factor in identifying druggable cellular functions that underpin the

onset and manifestation of complex inheritable diseases.

3. I aim to recruit and sequence the whole genome of rare and ultra-rare Mendelian

disease32 patients with varying ages of onset/symptoms to identify known and
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new potential disease-modifying genetic variants in the genome of the patients.
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2.1 Abstract
The most recent model describing complex symptoms of “Mendelian” diseases posits

an omnigenic architecture for the heritability of these traits. Thus analyses of the

underpinning biological functions resulting from the self-regulated system of all gene-

gene interactions among the active genes of the affected tissues, rather than loss of

function mutation on a few genes, gained momentum. As a practical oversimplifi-

cation, to date, most attempts to construct a model delineating such interactions

relied on integrated, high-throughput data that contained ubiquitous false positives,

resulting in the reportage of burgeoning, inconsistent and spurious functional group-

ings. Additionally, intricate regulatory interconnections of the genome, specific to a

tissue or a specific cell developmental stage, remain unsolved owing to the fact that

the functionality of particular groups of genes is dynamically dependent on the cell

life cycle/environment and is often impossible to infer from convoluted aggregated

data. Nonetheless, advancements in RNA sequencing technologies allowed inferring

tissue/cell developmental stage-specific Gene Regulatory Networks (GRNs), but an

accurate assembly of this network remained a strenuous task. Here we developed the

Non-Stiff Dynamic Invertible Model of CO-Regulatory Networks (NS-DIMCORN)

to address such drawbacks. The main advantage of NS-DIMCORN is constructing

continuous distributions of gene expression from RNA-seq data that allow sampling

of missing readouts to estimate the gene expression trajectories dependent on other

genes. We systematically demonstrated that the proposed approach is scalable and

compares favorably to the state-of-the-art algorithms in recovering genome-wide ab

initio genetic interactions, whether from synthetic or empirical data. Overall, we

put forward a path to contrive tissue-specific, directed, time-aware GRNs purely

from data and without relying on expert knowledge or prior assumptions.
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2.2 Introduction

Historically, GRNs are represented where genes are nodes, edges are pairs of genetic

interactions, and networks are overlapping pairs. GRNs inference has used data from

gene deletion (perturbation) screens and experiments that compared non-perturbed

(healthy) versus perturbed (diseased tissues)33. The recent emergence of high-depth

multi-sample (bulk RNA-seq) and single-cell RNA-sequencing (scRNA-seq) data

allowed more accurate GRN inference by modeling dynamic RNA expressions for

different tissue types or cells at different developmental stages (time points)34. Dis-

tilling informative ab initio genome-wide GRNs from whole-genome RNA expression

is especially useful given that Next Generation Sequencing (NGS) can conveniently

achieve statistical power using pseudo-bulk techniques and high-depth single-cell

RNA sequencing35. NGS has already produced substantial tissue and cell-specific

RNA-seq data that would allow comparing genetic interactions in different exper-

imental settings (e.g., healthy/diseases), different cellular processes, and different

developmental stages, all at tissue/single-cell level resolution36.

In RNA-seq experiments, the expression level of transcripts is calculated from

the number of sequenced reads that map to the codon responsible for those tran-

scripts at the same snapshot37. Thus, Differentially Expressed (DE) transcripts can

also indicate the direction and strength of their correlation with other genes and

samples38. However, it should be noted that RNA-seq data from NGS still contains

high technical noise, which can be exacerbated by sequencing-specific data features

such as sample heterogeneity, variation in sequencing depth, and sparsity mapped

reads34. Additionally, regulatory interactions are deemed far more interconnected

than simple protein-protein or gene-gene interactions due to the discovery of various

small Ribonucleic Acid (RNA) sequences that play active roles in the machinery that

regulates cellular processes39. Nonetheless, as reviewed by Pratapa et al., construct-
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ing informative models that recapitulate the complete and accurate set of genetic

interactions from RNA-seq data has been a very active area of research in the past

decade40.

Initial ab initio GRNs based on Boolean logic41 have been successfully used to

model high-level monotonic interactions of cellular mechanisms42. Even so, these

models failed to capture cascades of complex events, such as promoter recogni-

tion and the dynamic self-regulatory protein translations across the entire genome,

over the differentiating lifetime of a cell43. Therefore most recently, enhanced

Boolean logic44, regularized linear regressions45, Bayesian networks34,46, partial cor-

relation, semi-partial correlation47,48, Pearson correlation49, tree43, entropy50 based

approaches51 and Gaussian graphical models52 have all been utilized to model in-

tricate interactions between genes and gene products (e.g., proteins), but accurate

GRNs inference remains a challenging problem40. Briefly, enhanced Boolean logic,

regression, and correlation-based approaches fail to capture higher-order and more

complex gene-gene relationships (e.g., non-additive interactions)41. Though such

interactions can be elucidated using mutual information entropy, they require ho-

mogeneous data or hyper-parameter re-tuning to avoid overestimating interactions’

significance53. Spanning tree-based approaches can be used but are computation-

ally expensive, extremely sensitive to changes in data, and inadequate for predicting

continuous values as observed in empirical data54. Traversing Bayesian networks

may also be used, but calculating the conditional probability of edges is not a trivial

problem when a large number of interactions are involved, and these networks are

only suitable for steady-state data in their vanilla form34,46,52. Finally, Gaussian

graphical methods depend on the Gaussianity assumption, which also implies linear

dependencies between genes; additionally, most implementations of this approach

to date are incapable of handling directional interactions as in cell differentiation48.

Another promising approach for inferring GRNs from time-stamped data (like
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RNA-seq) is borrowed predominantly from other fields of natural sciences (e.g.,

Physics) that have a long history of studying dynamic systems and lending to

representing the dynamic process of a cell using systems of Ordinary Differential

Equations (ODEs)55. This method has been demonstrated to generate more real-

istic behavior and better describe genuine regulatory relationships of genome-wide

interactions in the cell36,52. In ODE-based methods, derivatives of differential equa-

tions describing the system can be estimated by difference approximation56,57 or

regularised differentiation58, and then be solved by linear methods59 by fitting a

mechanistic of nonlinear functions55,56 or nonparametric techniques60. In both of

these approaches, the main constraint of solving ODEs for a biological system with

tens of thousands of genes is their high-dimensional parameter spaces that require

larger sample sizes that can rapidly become computationally intractable as the ad-

dition of new samples adds up34. Here we demonstrate that this problem can be

dealt with satisfactorily by

1. utilizing a highly flexible and scalable method that can model functional rela-

tionships of dynamic data

2. bypassing the error-prone derivative estimation, and

3. using a nonrestrictive and scalable model architecture that allows cheap com-

putation.

Therefore, we developed the Non-Stiff Dynamic Invertible Model of CO-Regulatory

Networks (NS-DIMCORN) that allows unrestricted neural network architectures

(i.e., arbitrary depth increase) and training the model without partitioning or or-

dering the data dimensions. NS-DIMCORN yields a continuous-time invertible

generative model with unbiased density estimation by one-pass sampling, allow-

ing scalability and end-to-end training of larger ODEs-based models (Figure 2.1).

Furthermore, NS-DIMCORN only requires scRNA-seq read count data as an input,

and time points are automatically inferred by estimating probability distributions
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for the continuous gene expression trajectories instead of probability distributions

for the derivatives. This allows easy sampling of the continuous trajectories us-

ing Hamiltonian Monte Carlo and calculates nonlinear gene dependency based on

conditional Mutual Information (MI)61. To this end, we demonstrated that NS-

DIMCORN, on average, outperforms other state-of-art algorithms47,49–51,57,62–65 in

inferring GRN from synthetic, bulk, and single-cell RNA-seq data.
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(i)

(ii)

(iii)

Figure 2.1 | Overview of NS-DIMCORN. i: Data cleaning and harmonization where
mitochondrial genes (MT), cells with low gene count, batch effects, and genes with low
depth were removed. ii: training a neural network for bijective mapping from a latent
trajectory of learned continuous dynamics to data. iii: sampling and constructing sample-
specific GRN’s for community detection, from TP10K as defined at Section 2.5.2.



34 Results

2.3 Results

2.3.1 Overview of the algorithm

Given a set of irregularly sampled (missing reads indicated in red in Figure 2.1i)

scRNA-seq data for a specific tissue or cells, the goal of NS-DIMCORN is to model

gene expression across cellular process trajectories (i.e., cell lineage differentiation

trajectories). To this end, the read counts for all the scRNA-seq samples are normal-

ized (Figure 2.1i-1); samples with spurious or low-quality reads are removed; counts

are standardized, and the data set is harmonized to remove any confounding vari-

ables such as batch effects (Figure 2.1i-2). NS-DIMCORN represents different cell

states by continuous latent trajectory (Figure 2.1ii-1) and defines a bijective map

from the latent learned latent space to data by integrating latent variables (Fig-

ure 2.1ii-2). Latent trajectories are computed by solving an initial value problem

by an ODEs solver that is parameterized by a neural network and a given initial

state, zt0. The output of the last layer of the neural network is the solution to the

initial value problem, the hidden units are parameterized as a continuous function

of time, and the parameters of nearby “layers” are automatically tied together. This

learned model then, in turn, allows continuous sampling of reading counts even for

missing states/genes (blue states and reads) arbitrarily far forwards or backward

in time (Figure 2.1iii-1). Continuous sampling from cell states allows accurate es-

timation of conditional mutual information between each set of gene pairs as ab

initio (translated to weights of edges between two genes) and signs of co-variances

as an indicator of interaction directions in the inferred networks of tissue-specific

gene-gene interactions (Figure 2.1iii-2).
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 2.2 | Comparison of different algorithms when inferring GRNs from
synthetic data. In i, iii, and v, the six measurements (columns) represent a measure of
accuracy (as described in the methods section) for each algorithm (rows). In ii, iv, and vi
Absolute Minkowski distance of eight fundamental graph metrics between the ground truth
network and inferred network and the Jensen-Shannon divergence of Laplacian spectra of
the two graphs (GDi) are plotted. Column values for are panels are normalized, where
blue represents better accuracy/faithfulness than yellow. Blocks with the highest values
and more than three significant figures of difference are annotated, and F indicates an
undefined number. Overall, the heatmaps presented show NS-DIMCORN stays faithful to
the ground truth network topology and demonstrates the best accuracy for simulated long
linear and trifurcating development processes. PIDC slightly outperforms NS-DIMCORN
in the sense of accuracy by less than 1 percent but NS-DIMCORN constructed the most
accurate GRN topologically.
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2.3.2 Benchmarking against simulated data

Simulated data for Long Linear (Li), Trifurcating (Tr), and Cyclic (Cy)

cellular processes trajectories

In a closed dynamic system, functional changes result from the interchange of infor-

mation and interactions between constructional elements of the system (i.e., struc-

tural elements can switch each other on/off or self-regulate to steer the fate of that

system)66. In the context of GRNs, nuanced and continuously evolving changes

of these dynamic systems can be surveyed employing network topological features,

which can elucidate the type and strength of pairs and groups of interactions be-

tween genes in a network67. Many metrics have been suggested to study a network’s

topology and estimate the structural distance (similarity) between two networks68.

Here we focused only on the most robust and commonly used measures of network

topology69, namely Graph Path Length (GPL), Graph Degree (GD), Graph Mod-

ularity (GM), Graph Diameter (GDm), and Graph Clustering Coefficient (GCE)

as defined in the Methods (Section 2.5.8). For ease of reporting, we equipped the

vector space of these metrics with a norm–as opposed to using the topology metrics

directly; and reported the Minkowski distance of each one of these metrics for the

inferred network and their respective Ground Truth Networks (GTNs) in synthetic

examples and Known to be Truth Sub-Networks of experimental data (KTSNs)

only including interactions experimentally validated interactions for empirical data

(Section 2.5.7). In addition to topology metrics, it has been demonstrated that

the Laplacian eigenvalues of graphs also capture the local and global properties

of networks70; therefore, we further included Graph Distance (GDi) metrics which

capture the structural distance of the compared networks in terms of the Jensen-

Shannon distance of graph Laplacian matrices (Section 2.5.8). Finally, combining

all the proposed metrics, we calculated Graph Fidelity Distance (GFid) that nor-



Results 37

malizes and averages measurements in more than one graph (Section 2.5.8)69. Using

these considerations, we compared ten tools for inferring ab initio GRNs, including

NS-DIMCORN. We sought to determine if GRNs inferred by an algorithm from a

database would exhibit dynamics identical to the known underpinning network. To

this end, we executed each algorithm on pre-processed expression data as described

in the Methods using the recommended hyper-parameters from the original publica-

tions47,49–51,57,62–65. This step resulted in a ranked edge list of the inferred network

connections (edges). After removing all the self-loops, the inferred networks were

analyzed for faithfulness to the true network and accuracy as described in the Meth-

ods (Sections 2.5.7 to 2.5.8), we then reported two sets of statistics indicating the

performance of each given algorithm.

To avoid the pitfall of technical and instrumental noise in scRNA-seq data40,71,72,

and for ease of interpretation73, we first focused on synthetic data with a known

GRNs that could serve as the ground truth (Figures 2.2 to 2.3). This initial focus

also allowed us to avoid any limitations of pseudo-time dependent inference that

could potentially affect our benchmarking results, especially for GRISLI62, LEAP49,

PPCOR47, SCODE64, SCRIBE65, and SINCERITIES51 which required pseudo-times

provided separately as input. Three different temporal trajectories here, namely Lin-

ear, Cyclic, and Trifurcating, are constructed as described in BoolODE package74

represent the different possible dynamic cellular processes40, whether the trajecto-

ries relate to metabolism, cellular reprogramming, reproduction, differentiation, or

apoptosis through cell developmental stages. As for the linear trajectory here, we

included a long cascade of intermediate genes to attain enough complexity but en-

sured the linear trajectory still resulted in one distinct final steady state for each

initial state.

We observed that GRNBOOST263 and SCODE identified the highest number

of genuine regulatory interactions for long linear trajectories. At the same time,
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PIDC failed to identify any interaction owing to its approach to calculating mutual

information between genes. However, GRNBOOST2 and SCODE, notably SCODE,

showed low discrimination power, resulting in many false positives, spurious inter-

actions, and consequently lower AUROC and AUPRC –indicators of discrimination

power (Figure 2.2i). For the same linear trajectory, NS-DIMCORN only misclassi-

fied one of the authentic regulatory interactions but with far fewer false positives

than other methodologies and inferred the most accurate regulatory network, with

the highest AUROC and AUPRC. The non-perfect Direction scores (CDiR) for NS-

DIMCORN also resulted from the misclassified genuine interactions. Otherwise, the

correct direction was inferred for every identified genuine interaction (Figure 2.2i).

Expectedly, topology analysis of the inferred graph confirmed the above model ac-

curacy metric, and NS-DIMCORN showed the highest fidelity toward the ground

truth. We hypothesized that the unanticipated high difference in GCE (see Meth-

ods for metric definitions) for NS-DIMCORN can be attributed to the fact that the

clustering step of NS-DIMCORN creates artificial groupings within the harmonized

structure of the linear trajectory and hence reduces the statistical power of the NS-

DIMCORN inference. Indeed omitting the clustering step improved the performance

of the NS-DIMCORN for the linear trajectories (Supplementary Table S1), but we

believe a larger sample size would be a less error-prone approach for resolving this

issue, primarily when cell trajectories are not known or suspected to be complex

(Figure 2.2ii).

We also looked at trifurcating trajectories of cellular processes where mutual

regulation motifs involving more than one gene result in a few distinct steady

states from common initial states. As illustrated in Figure 2.2iii, benchmarking

NS-DIMCORN against the nine other algorithms for trifurcating trajectories demon-

strated the highest precision and superior discrimination power of NS-DIMCORN,

based largely on the highest AUROC (Section 2.5.6) and AUPRC (Section 2.5.6).
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Nonetheless, NS-DIMCORN was mostly unsuccessful in identifying the direction

of trajectory interaction. This was because of the arbitrary Cartesian coordinate

of each final steady state. Indeed NS-DIMCORN intrinsically would not have any

notion of the origin and would also not capture this information in the latent space.

PPCOR, on the other hand, was able to identify directions better, although for the

fewer correctly identified genuine interactions, using partial direction correlation

between two pairs and relying on the direction of pseudo-times (Figure 2.2iv).

NS-DIMCORN has struggled mostly with oscillatory circuits that yield linear

trajectories where the final state coincides with the initial state. This behavior was

mapped out here in the synthetic cyclic data with zero steady-state. NS-DIMCORN

was only the second-best inference algorithm based on AUROC as well as AUPRC

and demonstrated lower precision than PIDC and PPCOR. Circularity introduced

by the absence of initial/final temporal distinction among cells most likely underlies

this lack of performance. Regardless, NS-DIMCORN still successfully captures the

actual topology of the original graph better than all the other methods studied here

(Figure 2.2v).

(i) (ii)

Figure 2.3 | Comparison of different algorithms inferring GRNs from cells with
complex dynamics (linear, trifurcating, and cyclic) with large sample sizes and
a high number of active genes dynamic.
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Simulated data for Compound-Complex (CC) cellular processes

trajectories:

Networks comprising only single-mode trajectories conveniently allow identifying

strengths and shortcomings of an inference method in isolation but are hardly rep-

resentative of actual biological RNA-seq data75. Thus, we combined three datasets

with linear, cycling, and trifurcating trajectories to simulate more real-world-like,

complex, and large datasets. In addition, this larger dataset tests the scalability of

each inference method as it requires each algorithm to consider three times more cells

while inferring the underpinning GRN of the dataset. As expected, NS-DIMCORN

successfully captured the actual topology of the original graph and inferred the

most accurate regulatory network, with the highest AUROC and AUPRC (Fig-

ure 2.3i). The higher F1-S for SCRIBE and SINCERITIES indicated a high data

imbalance when considered with extremely low Pr (Section 2.5.6), AUROC, and

AUPRC scores. Higher modularity (Section 2.5.8) in the inferred GRN from these

methods suggests that SCRIBE and SINCERITIES focus on only part of the data,

which reduces their overall score (Figure 2.3). For the reasons mentioned above,

the PPCOR algorithm was better at identifying directions of correctly identified

genuine interactions, as it was observed for cyclic trifurcating trajectories.

2.3.3 Benchmarking against empirical data

We did not expect that the relatively simple rules used by BoolODE generating

synthetic data, even in their complex mode, would sufficiently mimic the proper-

ties of the real biological data. So we sought to determine if a GRN inferred by

an algorithm from an empirical dataset would exhibit dynamics and steady states

identical to the original underpinning network. Empirical RNA-seq data is often

categorized into three distinct groups (steady-state, bulk, and single-cell sequencing

data)76. The steady-state data refer to the expression level of genes after introduc-
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ing gene knockouts or essential gene perturbation under the assumption that only

meaningful pairwise interactions exist77. Even after excluding non-characterized

transcriptomes, this approach requires more than 200 million observations to assay

all pairs of genetic interactions for the remaining ≈ 20, 000 human genes78. At the

time of writing that paper, the largest dataset of this type only included around

0.1% gene pairs79 of possible interactions.

The other two types of data, namely Bulk RNA-seq data and scRNA-seq data,

provided sample data sets comprising snapshots of different cellular process states

within different cells or tissues80. Consequently, these data can represent the dy-

namic interactions of genes and cellular process trajectories beyond genetically mod-

ified or chemically perturbed, which is the focus of this study76. While scRNA-seq

data does not suffer the loss of information inherent to averaging processes in bulk

RNA sequencing methodology80, it is more noise-prone81.

To establish that NS-DIMCORN is scalable but at the same time is also sensitive

enough to detect nuanced dynamics specific to different tissues in the human body

among the noise, we included a larger dataset of brain cells with more specialized

cell types and a smaller dataset of heart cells. Empirical ground truths mainly

rely on prior expert knowledge and, due to their binary and agglomerative nature,

do not encapsulate signal type, direction, or time dependency of the functional

genomics nexus they describe82,83. Moreover, pleiotropic effects of genes and noisy

high throughput data used for the curation of these networks, combined with the

subjective allocation of genes to a network, cause truth networks to differ in number

and type of genes84 in different studies and may include many spurious interactions.

To alleviate the effects of false positive or false negative interactions from empirical

ground truth data sets on our experiment, we constructed a ground truth network

comprising only experimentally validated Transcription Factors (TFs) and genetic

interactions that are involved in essential and well-characterized metabolic pathways
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(Section 2.5.1).

(i) (ii)

(iii) (iv)

Figure 2.4 | NS-DIMCORN is scalable and identifies more known genuine
metabolic interactions than any other algorithm in brain and liver single-cell
sequencing data. a;c, The four measurements (columns) represent a measure of ac-
curacy for each algorithm (rows) where only true positives are partially known. b;d,
Absolute Minkowski distance of eight fundamental graph metrics between sub-networks
of partially known genuine metabolic interactions and inferred networks in addition to
Jensen-Shannon divergence of Laplacian spectra of the two graphs (GDi) are measured.
Column values are normalized, darker blue represents better accuracy, and lighter yellow
represents lower accuracy. Blocks with the highest values and more than three significant
figures of difference are annotated, and F indicates an undefined number.



Results 43

NS-DIMCORN inferred network from sc-RNA-seq data is specific:

In the liver, SCODE identified the highest GII (Section 2.5.7) compared to its re-

spective KTSN (Section 2.5.1) and many other interactions. The high number

of interactions identified might indicate many false positives; therefore, a worse

T5KI (Section 2.5.7) score was given to SCODE (Figure 2.4i). PPCOR more or

less showed the same behavior as SCODE, which is in contrast to NS-DIMCORN,

which attained a better GII score and showed good sensitivity indicated by low AII

(Section 2.5.7) and high T5KI (Section 2.5.7). Comparing the topological fidelity

distance (Section 2.5.8) of the KTSN and the inferred GRN again demonstrated

the superior performance of the NS-DIMCORN. GM (Section 2.5.8) and GD (Sec-

tion 2.5.8) scores are also consistent with our rationale that SCODE connected most

of the genes in the network and lost the modular texture of real GRN (Figure 2.4ii).

In the brain, NS-DIMCORN again achieved the highest GI5KI but showed a

more significant topological distance to the KTSN than PPCOR. Graph path length

(Section 2.5.8) and gene centralities appeared to contribute most to this observation

(Figure 2.4iii, Figure 2.4iv). The extra interactions identified by PPCOR appear to

be non-overlapping with the KTSN, but the same genes, in general, having more

interactions as indicated by graph clustering coefficient and greater reach regardless

of their authenticity would explain this observation. It is noted that GRISLI, PIDC,

and SCRIBE failed to generate an output, given the size of the brain dataset and

the number of genes involved in the network. GRISLI ran out of memory on a

high-performance 72-core computer with more than 2TB of RAM, SCRIBE could

not generate output in more than seven days on the same computer, and PIDC

produced only undefined values for the output (Figure 2.4iii, Figure 2.4iv).
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NS-DIMCORN is scalable and allows specificity for bulk RNA

sequences and aggregated data:

(i) (ii)

(iii) (iv)

Figure 2.5 | NS-DIMCORN is less sensitive to diffident cell types in the same
tissue in comparison to different but similar tissues.

For the bulk RNA-seq data, despite the fact that the brain has more specialized cells,

only a few people with different sub-brain tissue information were obtainable. Liver

samples were of a larger dataset, although the number of individuals sequenced for

the liver data was still relatively small compared to the number of cells in the scRNA-

seq dataset. Our rationale for choosing bulk RNA-seq data was to investigate if

NS-DIMCORN can still successfully infer the best network when the data is highly

aggregated–bulk, many genes are involved–the brain and only partial data exist–
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few sub-tissues. Our observations were largely in accordance with the result from

scRNA-seq data. The only difference is that we recovered a more accurate topology

for the bulk brain, which is consistent with the literature stating bulk RNA might

still be a better choice for identifying interactions with smaller effect sizes80. We

also observed SCRIBE was the only algorithm that failed on the brain data, which

suggests, as opposed to GRISLI and PIDC, the algorithm performance is dependent

on the network size (Figure 2.5iv).

2.4 Discussion

We excluded four algorithms that we included initially in this study, namely SCRIBE65,

SINGE85 GRNVBEM46 and SCNS44 given that they failed to produce an output for

most or all of the datasets studied here. Speed, memory, or inflexible implementa-

tion were the main drawbacks of these methods on our high-performance computer

with 2TB of RAM, 72 core CPUs, and 4 Nvidia A100-80GB GPUs. Although these

specs are vastly better than an ordinary desktop computer, not every method could

achieve concurrency or efficiently utilize all the provided computation resources, so

the same result would likely have been obtained on low-spec computers. We did not

attempt to optimize the run time of any of these methods and terminated any pro-

cess after a week if no output was produced. Of these methods, NS-DIMCORN was

the only method cable of utilizing GPUs for array operations and model training,

being entirely based on TensorFlow86 and cuPy87 (a GPU based implementation

of NumPy). We observed that including 2500 genes for around 8000 cells during

training, the NS-DIMCORN model requires roughly thirty hours to model the data.

However, our method’s run-time and memory usage heavily depend on the number

of genes and samples used as input.

NS-DIMCORN primarily relies on DESC for clustering the related cells before

training the generative model, but this might introduce some limitations when study-
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ing linear cellular trajectories. DESC originally initialized clustering regions using

the Leiden clustering algorithm88 and then optimized the clusters by stochastic gra-

dient descent89. Here we swapped Leiden clustering for DensMAP, believing UMAP

better preserves the fine details of the data manifold88; therefore, more lenient clus-

tering configurations for UMAP would improve NS-DIMCORN performance for lin-

ear data90.

Regulatory interaction between genes in different cells can be statistically de-

fined by information theory53. Although most gene pairs satisfy linear or monotonic

relationships, Mutual information is often used as a generalized correlation mea-

sure91,92. It has been suggested that bi-weight mid-correlation transformed via the

topological overlap transformation is a more robust correlation measure and attains

better accuracy in identifying interacting gene sets in terms of Gene Ontology en-

richment91. We believe this assumption naively overlooked the implicit reliance of

the used MI methodology on the local uniformity of the underlying joint distribu-

tion, which is not the case for strongly dependent variables such as gene expression

level50. NS-DIMCORN uses covariance to identify genes interaction direction and

Non-parametric entropy estimation to compute the degree of this correlation. The

basic idea behind non-parametric entropy estimation is that locally estimating the

log probability density at each data point, then averaging these estimates, allows

accurate estimation of MI between two strongly dependent variables93.

In summary, we presented the Non-Stiff Dynamic Invertible Model of CO-Regulatory

Networks (NS-DIMCORN) and systematically evaluated NS-DIMCORN with syn-

thetic data representing different cellular trajectories, bulk, and scRNA-seq data

from different tissues and sample sizes. We demonstrated NS-DIMCORN scala-

bility due to its unrestricted neural network architectures and showed its superior

performance compared to the state-of-the-art algorithms for ab initio GRN infer-

ence based on cellular trajectories. We showed that not only does NS-DIMCORN
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estimate the chronological ordering of the cellular trajectories unsupervised from the

data, but it also offers high sensitivity and specificity due to its invertible generative

model that allows unbiased density estimation using continuous sampling.

2.5 Methods

2.5.1 Datasets

Empirical data

For single-cell sequencing data, the Allen brain map dataset94 comprising 76,533

total nuclei from the primary motor cortex of two coronal post-mortem human

brain specimens was chosen. Those authors have described details of performed

DNA-seq sequencing and preliminary data processing steps such as case inclusion

criteria, nucleus dissociation/sorting, and RNA-sequencing methodology (barcode

extraction, mapping, alignment, filtering and annotating BAM file with gene tags)94.

We obtained the raw gene expression count matrix as a CSV file and applied filtering

and clustering as described later in (Section 2.5.2). To study the tissue specificity

of our method, we also included the Human Protein Atlas dataset95 that comprised

8439 total nuclei derived from parenchymal and non-parenchymal of fresh hepatic

tissue of five human livers96. We obtained the raw gene expression count matrix

that was prepared as described96,97 and applied filtering and clustering specific to

this study (Section 2.5.2). Bulk RNA-seq data in this study was obtained from the

GTEx Consortium atlas98 portal (dbGaP Accession phs000424.v8.p2). For all the

individuals for which data from the liver and brain was available, we downloaded

read counts for the RNA-Seq data and processed the data as described in more

detail here (Section 2.5.2).
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Known to be true sub-network of empirical data (KTSN)

We only included experimentally validated transcription factors (TFs)99 and genetic

interactions involved in essential and well-characterized metabolic pathways100,101

in our ground truth as described earlier. We further filtered interactions of the net-

work to “super pathways” only if they have been captured analogously in KEGG100,

Reactome101 and WikiPathway102, the three most cited datasets in published -omics

studies84 to indicate biological evidence.

Synthetic data

Expression data were simulated for 500 cells following linear, cyclic, or trifurcating

two-dimensional projections by converting their Boolean GTN interaction matrix

into noisy nonlinear ordinary differential equations described by Pratapa et al.,40,103

before. Random Gaussian noise104 was added to ensure the intrinsic stochasticity of

the data was conserved in the simulated data103.

2.5.2 RNA-seq data prepossessing

We obtained the count matrix (Allen brain, Human protein atlas dataset) and OMNI

SNP Array Intensity files (GTEx brain and liver) and then read those files into an

AnnData object with hierarchical data format105 for the downstream processing.

Genes detected in less than a threshold number of cells/tissue samples were not

included due to the low sampling rate. This threshold was determined based on the

average sequencing depth for each dataset so that the majority of high-confidence

reads were retrieved (Allen Brain dataset = 100 cells, Human Protein Atlas dataset

= 50 cells, GTEx brain = 25 samples, and GTEx liver = 10 samples). To fur-

ther remove poor-quality cells, we calculated the total RNA read counts and the

percentage of those counts relating to mitochondrial genes and then removed cells

and samples without enough RNA reads ( 3 × Mean Absolute Deviation (MAD)),

gene coverage ( 4 × MAD), or a high portion of mitochondrial RNA (3 × MAD)
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(Figures 2.6 and 2.7).

To make sure all cells/samples have the same ratio of genes expressed for the

deep learning model and other downstream analyses, sample counts for each cell

were normalized by the total counts over all genes so that it sums up to 10 × 104

and then pseudo-log-transformed these values as follows:

log(TP10k + 1) = log((transcripts/1 × 104) + 1) (2.1)

While datasets that combine microarray data106, the expression state of a large

number of genes, are advantageous in achieving statistical power, samples from dif-

ferent batches that were obtained and prepared at varying locations or times (e.g.,

GTEx) or comprise a large number of cells (e.g., Allen Brain Map) suffer from non-

biological experimental variation or “batch effects”107. Batch effects often impose

serious computational challenges and result in spurious outcomes and conclusions;

hence, to address this problem, we utilized DESC, an unsupervised deep embedding

algorithm capable of removing batch effects that are smaller than the actual biolog-

ical variation89. DESC also assigns cells with a more similar experimental setting

into a soft cluster in an unsupervised manner89. For the DESC step, we adopted the

default setting but only considered the maximum of 10 neighborhoods instead of 25

and incorporated densMAP community detection methodology for establishing seed

clustering boundaries to better preserve the topological features of transcriptomic

variability data88,108.

GENIE3, GRNBoost2, PIDC and NS-DIMCORN account for cell sub-types and

underlying cell state changes directly. For the rest of the algorithms that, in ad-

dition to RNA-seq data, require trajectory inference data as input, we inferred the

progression of cells through geodesic distance along the coarse-grained map of the

sequencing data manifold, based on the connectivity of manifold partitions [109]

and provided these values to the algorithms as pseudo-times for mimicking real
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sequential cell states (c,d - Figures 2.6 and 2.7).

In order to avoid mischaracterizing sub-tissues as the states of cells by NS-

DIMCORN, we further refined and merged the soft clusters previously assigned by

DESC into larger sets dependent on consensus cell-type-specific marker genes of

the brain and liver. Namely, brain cells were combined into five distinct groups

of astrocytes, endothelial, microglia, neuron, and oligodendrocyte110; and liver cells

were placed into either of the cholangiocytes, blood, mesenchymal, epithelial, im-

mune and bud-hepatic sub-cluster96. Fine-grained final cell clusters (e,f - Figures 2.6

and 2.7) used to profile the robustness of NS-DIMCORN also accounted for devel-

opmental cell stages G1/S, S, G2 and G2/M , using well-characterized marker genes

of essential cell cycle processes (DNA replication, chromosome segregation, and cell

adhesion)111.

We included only the most relevant genetic drivers of each GRN, thus increasing

the power of downstream network inference algorithms, by identifying the set of

most characteristic genes78 of each tissue/sample type and ranked them based on

their variances across each single-cell dataset. To further explain, after data stan-

dardization with a regularized standard deviation (i.e., z-score normalization per

feature) and controlling for the relationship between mean expression and variabil-

ity, the pseudo-log-transformed normalized variance of each gene was calculated as

the variance of each gene; genes were then ranked by this variance75, and only the

most highly variable 2500 genes were included in downstream analysis.



Methods 51

Figure 2.6 | Bulk RNA-seq data prepossessing: cells with less than a thresh-
old RNA-seq reads count or cells with a high portion of mitochondrial genes
were removed (a,b). Cells with high-quality reads were then clustered on the
expression profile, and PAGA developmental trajectories were calculated (c,
d). Obtained clusters were refined into merged sets of the same developmental
stage and cell subtype(c, d).
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Figure 2.7 | Single cells RNA-seq data prepossessing: cells with less than a
threshold RNA-seq reads count or cells with a high portion of mitochondrial
genes were removed (a,b). Cells with high-quality readds were then clustered
on expression profile, and PAGA developmental trajectories were calculated (c,
d). Obtained clusters were refined into merged sets of the same developmental
stage and cell subtype(c, d).
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2.5.3 Estimating RNA-seq data real distribution

The main advantage of NS-DIMCORN is estimating continuous distributions of gene

expression trajectories from RNA-seq data that allows sampling of the trajectory

states between the available readouts as well as the observed results. We achieved the

above by designing and optimizing an ODE network112,113 that defines a continuous

bijective map between vector field (latent variables, y) to RNA-seq data x, such

that formally:

Tθ : x → y, T 1
θ : y → x (2.2)

Sampling from high dimensional space of the RNA-seq data would be computa-

tionally expensive or infeasible, hence given the invertible function above, instead

of directly parameterizing the distribution of RNA-seq data, we specified the data

distribution implicitly by warping a base distribution Z ∼ pz(z), with an invert-

ible (bijective) function. For RNA-seq data xn,mwith m genes, n observations and

x ∈ RD we chose z0 as the base distribution where z0 is a multivariate normal with

µ = {µ0, · · · , µm} and σ = {σ0, · · · , σm}. Here µ0 is equal to the normalized mean

of the first gene from n observations, and σ0 is its normalized variance among all the

readouts for that gene. It should be noted that when the number of observations

was less than 1280 (chosen based on the number of batches that could be fitted opti-

mally on the available A100 Nvidia GPUs with 80 GB of memory) for a tissue/type

of cell, in order to allow the model to converge with minimum fluctuation during the

training, we augmented the dataset by generating new readouts within range of 0.1

( just an arbitrary choice) of variance of each gene for randomly selected RNA-seq

observations.

Thus, if the parameterized continuous dynamics of genes, trajectories using invert-

ible ODE parametric function were specified by a neural network:
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dz(t)
dt

= f(z(t), t; θ) (2.3)

For training the network, NS-DIMCORN firstly takes samples from the base distri-

bution Z0 ∼ pz0 (Z0); then solves the initial value problem below:

z (t0) = z0, ∂z(t)/∂t = f(z(t), t; θ) (2.4)

for Zt1 using the Dormand-Prince explicit solver of non-stiff ODEs114 given the

observations in the RNA-seq dataset. To calculate the value of Z (t1) ∈ RD, the

main challenge is computing the determinant of the Jacobian of the ∂f
∂z , which can

restrict the architecture of the neural network used115. Here we use an instantaneous

change of variables Equation (2.5)112 as described by Chen et al. for this calculation

that allows the gradients to be computed efficiently using the adjoint sensitivity

method112:

∂ log p(z(t))
∂t

= − Tr
(

∂f

∂z(t)

)
(2.5)

log p (z (t1)) = log p (z (t0)) −
∫ t1

t0
Tr
(

∂f

∂z(t)

)
dt (2.6)

Also, to avoid the major pitfall of the RNA inference algorithms, instead of in-

corporating error-prone pseudo-time, we allowed the solver to choose tk−1 and tk,

the time between two different observation, which was then integrated over time in

Equation (2.6) as stated in Equation (2.5).

Eventually for every gene expression readout, NS-DIMCORN computed Z0 that

generates that readout as well its likelihood using:
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 z0

log p(x) − log pz0 (z0)


︸ ︷︷ ︸

solutions

=
∫ t0

t1

 f(z(t), t; θ)

− Tr
(

∂f
∂z(t)

)
 dt

︸ ︷︷ ︸
dynamics

,

 z (t1)

log p(x) − log p (z (t1))

 =

 x

0


︸ ︷︷ ︸

initial values

(2.7)

Given that now we can efficiently calculate the Jacobian of T = ∂Tθ(y)
∂y as follows

we can keep track of the deformations using the change of variable formula (Equa-

tion (2.8)), and transfer the notion of probability onto x and invert it again if

needed115 as follows:

log px(x) = log py(y) − log det
∣∣∣∣∣∂Tθ(y)

∂y

∣∣∣∣∣ (2.8)

2.5.4 Co-variance Estimation

The inverse of the covariance matrix (precision matrix) is proportional to the partial

independence relationship between matrix columns (genes). Under the assumption

that only linear relationships exist between genes, if two genes are independent con-

ditionally, all the corresponding coefficients in the precision matrix for those genes

will be zero116. The covariance matrix of each sampled dataset can be calculated

empirically. But inversion of the covariance matrix is computationally expensive

and sometimes numerically impossible. Moreover, for high dimensional data or

uncentered data samples, the precision matrix obtained from the inversion of the

covariance matrix is not accurate (The Maximum Likelihood Estimator is not a

good estimator of the eigenvalues of the covariance matrix). Consequently, esti-

mating the precision matrix directly from data is the next best logical step117. To

this end, we utilized a Hamiltonian Monte Carlo (HMC) sampler with adaptive step

size118 where the target log probability was a multivariate normal, parameterized

by Chelosky factors of the precision matrix and a Wishart distribution as prior dis-

tribution (conjugate prior of multivariate normal). The full implementation of the
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HMC sampler is described by MCMC using Hamiltonian dynamics paper119 and its

implementation is described elsewhere120.

2.5.5 Mutual information (MI)

MI is a quantitative measurement of how much concurrent information exists about

two variables. MI is a better measure of nonlinear interaction92 and consequently

a good candidate for measuring non-linear interactions in GRNs. For two genes

(Gn, Gm distributed according to some joint probability density µ(gn, gm), where

marginal densities of gm is equal to µgm(gm) =
∫

dgnµ(gm, gn) and the marginal

densities of gn is equal to µgn(gn) =
∫

dgmµ(gn, gm) the MI is defined as

I(Gn, Gm) =
∫∫

dgndgmµ(gn, gm) log µ(gn, gm)
µgn(gn)µgm(gm)

(2.9)

For a more efficient estimation of MI for strongly dependent variables (such are pre-

cursors of protein in a pathway), we tweaked the Kozachenko-Leonenko estimator92

for local nonuniformity correction such that if V(i) ⊂ Rd is the volume of k nearest

neighbors of a sample point gi in some space; we assumed that there is some subset,

V(i) ⊆ V(i) with volume V (i) ≤ V (i) which density is constant as described by Geo

et al., genes93 .

ÎLNC(G) = Î(g) − 1
N

N∑
i=1

log V̄ (i)
V (i)

(2.10)

Thus, this correction term will improve the estimate of V (i) for strongly correlated

interactions.

2.5.6 Model accuracy metrics for synthetic data

For synthetic data, where we were sure about the majority of the actual interactions

(besides noise) in a GRE, we evaluated the result of each algorithm using the follow-

ing criteria. We assigned the edges in the relevant network the true positive label and

ranked edges from each method as the predictions. Beforehand, we omitted all self-
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loops given that some methods always assigned the highest rank to self-regulating

genes. Some other methods, such as SINGE, and critically NS-DIMCORN, ignored

them.

Precision (Pr)

The precision is the ratio

tp/(tp + fp) (2.11)

where tp is the number of true positives and fp is the number of false positives.

The Area Under the Precision-Recall Curve (AUPRC)

AUPRC was calculated using the average_precision_ score function from sklearn121,

which summarises the precision-recall curve as the weighted mean of precisions

achieved at different thresholds.

The Area Under the Receiver Operating Characteristic (AUROC)

AUROC was calculated using the roc_auc_score function from sklearn121. The Re-

ceiver Operating Characteristic (ROC) curve is created by plotting the true positive

rate vs. the fraction of false positives out of the negative false positive rate at various

threshold settings. A receiver operating characteristic curve, or ROC curve, illus-

trates the diagnostic ability of the classifier as its discrimination threshold changes.

AUROC varies between 0 and 1, with 0.5 being an uninformative model.

Balanced F-score (F1-S)

F1 scores compute the harmonic mean of precision and recall so that

tp
tp + 1

2(fp + fn)
(2.12)

where tp is the number of true positives fn is false negatives and fp is the number

of false positives. An F1 score of 1 is the best score and 0 is the worst possible F1
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score.

Correct Directions (CDiR)

CDiR is the portion of inferred interactions that also showed the direction of in-

teraction between genes correctly in the biological sense this can be interpreted as

inhibitory vs. excitatory regulation.

2.5.7 Model accuracy metrics for empirical data

Given that we could not fully establish which gene-gene interactions are false posi-

tives, true positives, and false negatives for empirical datasets, instead of the conven-

tional accuracy metrics introduced above, we adopted a new set of modified accuracy

measures for the bulk and the single-cell sequencing data. AUC and AUPRC esti-

mates are sensitive to noisy data122 yet are linearly related to observed accuracy123

and it is also proven that both are closely related to the Wilcoxon test of ranks124,125.

Using the above line of reasoning, we assumed that we could extrapolate the accuracy

of a model from a portion of identified true positives and false negatives. Hence for

predictor model f , we defined True in the Top 5000 Identified Interactions (T5KI)

as an unbiased surrogate metric of the model’s discrimination and calibration. T5KI

can be interpreted like the Early Precision Ratio (EPR) metric that was previously

used for benchmarking GRN inference algorithms40.

All Interactions Identified (AII)

AII counts the number of all the identified interactions.

Genuine Identified Interactions (GII)

In the context of empirical data, AII measures the number of identified interactions

identical to those in our curated super pathway dataset.

Missing Expected Interactions (MEI)

MEI is the offset of unidentified interactions from the supers pathway dataset.
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Genuine Interaction in the Top 5000 Identified Interactions (T5KI)

T5KI measures the number of AII only in the top-ranked 5000 inferred interac-

tions while incurring the penalty for missing known-to-be true interactions (MEI).

Formally

T5KI(f) =
∑

t0∈M0
∑

t1∈M1 1 [f (t0) < f (t1)]
|M0| · |M1|

(2.13)

here 1 [f (t0) < f (t1)] denotes an indicator function which returns 1 iff f (t0) < f (t1)

otherwise return 0; M0 is the set of negative examples such as MEI, and M1 is the

set of positive examples such as AII.

2.5.8 Graph topology metrics

For the strictly defined weighted Graph G with sets of vertices G ⊆ {v1, ..., vn}, n

nodes and m edges

Graph Path Length (GPL)

is the normalized sum of path lengths d(s, t) between all pairs of nodes, and it

measures the efficiency of information flow for a network. Here we reported the

averaged PL of each sub-graph when disconnected graphs were observed.

a =
∑

s,t∈V

d(s, t)
n(n − 1)

(2.14)

The Averaged Degree (D)

is the averaged number of adjacent edges to nodes, while Averaged Degree Centrality

(DC) is the portion of nodes connected to each node. The Density (Den) of network

G is defined as

d = m

n(n − 1)
(2.15)
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Together, D, DC, and Den were used as a surrogate for the first moment and second

moment of the Degree distribution, which indicates the number and size of the

network hubs.

Graph Modularity (GM)

uses Clauset−Newman−Moore greedy modularity maximization and calculates the

strength of divisions of the network into clusters.

Graph clustering Coefficient (GCE)

has been calculated as the geometric average of the sub-graphs normalized edge

weights and measures the degree to which nodes in a graph tend to cluster together.

Formally

cu = 1
deg(u)(deg(u) − 1))

∑
vw

(ŵuvŵuwŵvw)1/3 (2.16)

Where ŵuv = wuv/ max(w)

Graph Diameter (GDm)

is the measure of the graph’s eccentricity. In other words, the maximum distance

between a vertex to all other vertices is called the diameter, Dm. Dm is in contrast to

the more behavioral metrics discussed beforehand (how each node behaves), M, Ce,

and Dm focus on the topological level of a network.

Graph Distances (GDi)

We calculated structural distance D (Γ1, Γ2) between two different graphs in terms of

the Jensen-Shannon distance J−S of Laplacian spectra of the two graphs126. Briefly

if Gaussian kernel g(x, λ) : 1/
√

2πσ2 exp
(
− (x − mx)2 /2σ2

)
exists the function of

convoluted spectrum of a network with σ = .01 is defined as

f(x) =
∫

g(x, λ)
∑

k

δ (λ, λk) dλ =
∑

k

g (x, λk) and 0 <
∫

f(x)dx < ∞ (2.17)
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spectral density f ∗ was then calculated by normalizing f as:

f ∗(x) = f(x)∫
f(y)dy

(2.18)

and distance is equal to

D (Γ1, Γ2) =
√

JS (f ∗
1 , f ∗

2 ) (2.19)

Graph Fidelity (GFid)

Fi combines the properties of a complex inferred graph and ground truth networks

to compare their similarity overall with a single numerical calculate fidelity metric

δ as described by Alexandru Topirceanu69. Fidelity measures the averages over an

arbitrary number of measurements for a graph.

2.5.9 Overview of the benchmarked algorithms

GENIE3

GENIE357 was the top performer algorithm for inferring regulatory networks for bulk

transcriptional data in the DREAM4 challenge. GENIE3 regresses the expression

profile of genes one at a time and then ranks each gene’s importance in predicting

other genes’ profiles using random forests. It then constructs regulatory networks

by aggregating these weights such that the level of importance becomes the edge

weights in the network.

GRISLI

GRISLI62 uses linear ODEs to calculate how gene expression values change during

the cell sampled cell states for the provided experimental times (here, input pseudo-

times).
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GRNBoost2

GRNBoost263 uses regression and tree-based models like GENIE3 but incorporates

stochastic gradient boosting and early stopping to achieve better speed for bigger

networks with more genes under study.

LEAP

LEAP49 calculates asymmetric Pearson correlation of RNA-seq read counts between

permuted different experimental times. The Maximum Pearson’s correlation be-

tween two pairs indicates the directed edge weights in the network.

PIDC

PIDC50 calculates unique mutual information between two genes such that the rela-

tionship between two genes is proportional to the relationship of those genes to all

the other genes in the network.

PPCOR

PPCOR47 estimates the pairwise partial correlation coefficients given all the other

genes’ expressions and computes a P-value for each correlation. Negative correlations

here are deemed inhibitory and positive correlations are considered activating.

SCODE

SCODE64 is essentially the data dimensionality and regress for linear ODEs to de-

scribe how gene-gene interactions result in observed gene expression dynamics.

SCRIBE

SCRIBE65 computes mutual information between the past state of a regulator gene

and the current state of a regulated gene, given the state of the regulated gene at the

last experimental time, then excludes interactions relating to other indirect effects.
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SINCERITIES

SINCERITIES51 infers gene-gene weights in GRNs by computing changes in the

distributions of gene expressions between two consecutive experimental times using

the Kolmogorov–Smirnov statistic and ridge regression. Partial correlation analyses

between pairs of genes then indicate the direction interactions in these networks.
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Precise graph-based annotation of
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3.1 Abstract
Precise annotation of the genome is the limiting factor in identifying druggable cel-

lular functions that underpin the complex onset and manifestation of inheritable

diseases from DNA sequencing data. Although many ad hoc methods have been

developed for agglomerating DNA sequencing data with other -omic information

to shed light on the etiology and source of these conditions, there is yet to be a

uniform approach for combining tissue-specific epistasis and the deleterious impact

of disease-related genetic variants. Recent advancements in deep learning and the

availability of datasets comprising hundreds of thousands of whole genome sequences

of patients accompanied by longitudinal clinical records provide new prospects for

devising models with enough depth to capture the intricacy of genotype-phenotype

relationships in complex heritable diseases. Here we developed the Precise Graph-

based Genome-Wide Annotation Software (PG-GWAS), a new method based on

graph attention networks (a combination of a graph neural network and attention

layers) for annotating sequencing data and identifying deleterious genetic variations

in their biological context. The main component of PG-GWAS’s is a pan-genomic

graph of the whole genome, augmented with cell type/developmental state-specific

regulatory networks. In these graphs, nodes capture gene-specific deleterious ef-

fects of genetic variation, and edges are weighted by gene-gene interaction strength,

enabling effective pooling of information from genes’ local deleterious burden and ef-

fects from distal sets of interacting genes. Annotation of the genome of patients with

rare complex inheritable “Mendelian” diseases shows that PG-GWAS successfully

identifies damaging variants. Furthermore, it prioritizes genes involved in pathways

paramount for disease progression and symptoms. Finally, PG-GWAS supports pro-

cessing genome-scale datasets using distributed, GPU-accelerated data architecture

and implementation.
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3.2 Introduction

The onset and most phenotypic manifestations of heritable diseases can not be ex-

plained by a small number of genomic loci or only by the additive combination

of loci associated with the diseases127–129. Consequently, studying such progres-

sions/manifestations is more exacting and does not conform to the classic Mendelian

paradigm that a few rare genomic variants are responsible for a disease,130–132. How-

ever, the advancement of next-generation sequencing and population-scale biobanks,

such as the UK Biobank133, “All of Us”134 and Biobank Japan135 presented an un-

precedented opportunity to investigate the common heritable contributors of com-

plex diseases136. These data sets contain health records for hundreds of thousands

of individuals and genomic data to allow scaled mapping between genome and clin-

ical phenotypes under the assumption of poly- or omnigenic models of complex

diseases133,134.

To date, the most common approach for studying complex diseases, Genome-

wide association studies (GWAS), analyzes the differences between three sets of

genetic markers, namely Single Nucleotide Polymorphisms (SNPs), Sequence Vari-

ations (SVs), or copy-number variants in individuals with the trait and a matching

control samples cohort137. This association between a genetic variant and an out-

come is quantified as an odds ratio (OR) by comparing the occurrence of genetic

variants in the case and control group with linear or logistic regression137 Criti-

cally, after 15 years of GWAS and despite sample sizes of some studies exceeding a

million participants138,139, most of the genomic risk loci associated with phenotypic

traits using GWAS explained only a relatively small proportion of complex diseases

heritability leading to the term “missing heritability”140–145.

The GWAS methodology’s shortcoming is two-fold146–148. Firstly, on the in-

trinsic level, GWAS requires accurate genotyping, yet the quality of called genetic
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markers depends on the sequencing instrument used and the multi-stage, error-

prone data processing involved for determining variant markers149,150. Moreover,

even with accurate genotyping, GWAS depends on the ’reference genome,’ meaning

variant calling is bedeviled by the presence of population stratification, such as for

people with different racial ancestries (genetic backgrounds)151. Secondly, due to

the cosegregation of chunks of DNA during meiotic recombination, some neighbor-

ing genetic variants tend to be inherited together and appear to be correlated with

a phenotype misleadingly152. This phenomenon is referred to as linkage disequilib-

rium (LD) and results in biased test statistics and inflated statistical association153.

This situation is only exacerbated with GWAS design that tests for millions of as-

sociations one at a time (multiple testing), resulting spurious associations154–158,

and the proposed remedy for this situation, stringent multiple-testing thresholds,

removes genuine associations with small effect sizes159,160. Most importantly, clas-

sic GWAS does not consider the type of effects caused by genomic variants (e.g.,

loss of function, buffering of genes161, regulatory activity of non-coding DNA) or

the interactome networks that mediate genotype-phenotype relationships in specific

cell types that drive a disease162–166 Therefore it is not surprising that the current

approach to GWAS has been criticized for lacking a theoretical basis and being

only a statistical convenience167–170. Specifically, complex heritable traits that are

influenced by high-order synergistic (epistatic) interactions between genes in all ex-

pressed genomic elements in the cell must also be accounted for144,167,171,172.

As a result, recent GWAS attempted to tackle these challenges by 1) function-

ally annotating downstream effects of genomic variants and 2) integrating GWAS

results with other -omics information such as gene expression, chromatin activity,

and regulatory networks between and among risk factors98,127,128,150,166,167,173,174. The

first approach can involve variant-level identification of genomic coordinates on the

reference genome. These genomic coordinates are localized to protein-coding or non-
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coding regions of the DNA by converging the coordinates on proximal known genes’

location on the assembled reference genome175. The impacts of these genomic vari-

ations can then be examined for expression pattern and protein integrity at a gene

level25. In this regard, tools like Variant Effect Predictor (VEP)176 infer whether

the variant is exonic, intronic, splicing, 3�-untranslated region (UTR), 5�-UTR, in-

tergenic, synonymous, non-synonymous or is a frameshift insertion/deletion. These

tools provide a gene loss of function or protein perturbation score based on some

particular nucleotide-based criteria177 available from coordinate base datasets such

as ANNOVAR178 and CAAD179. Indeed, from an information-theory point of view,

protein functional information is encoded within its primary DNA sequence180. But

protein’s primary sequence also determines functional three-dimensional shape180,

and methods based on Deep Language models have been shown to learn this struc-

tural information accurately from sequencing data25,181. In the second approach,

context-specific functional gene expression is based on the observation that spe-

cific diseases primarily affect specific types of cells182. Indeed, it is equally note-

worthy that while core genes directly affect disease pathogenesis, peripheral genes

modify or buffer these conditions differently in individuals (i.e., each person has a

unique genetic background183). This type of variation may be discovered by group-

ing (guilt-by-association) methods in a function-specific manner184,185. The genetic

regulatory network comprising identified gene-gene interactions can then be consol-

idated, organizing these individual interactions into biologically meaningful groups

that allow testing various genetic scenarios by specific gene variant queries186–188.

However, delineating such complex interactions requires integrating data from mul-

tiple modalities with distinct feature spaces in a way that can be flexibly augmented

and thoroughly analyzed189. To our knowledge, there has not been a unified frame-

work that addresses the shortcomings mentioned above in capturing the deleterious

effect of genetic variants, thence proceeding to a holistic examination of its context-
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specific consequences of such annotated variation is required190–193. Here we present

our Precise Graph-based Genome-Wide Annotation Software (PG-GWAS), a graph

attention neural network model194 designed to take into account all regulatory infor-

mation available for a diseased cell. PG-GWAS consequently improves predictions

about the deleterious effect of genomic variants. In PG-GWAS graphs, nodes repre-

sent genetic variants with contextualized embedding (converting high-dimensional

data to low-dimensional data) scores that encode the likelihood of deleterious effects

on their respective gene products in their biological context.

The human reference genome is a unified linear representation of a human

genome, created by melding haplotypes of about 25 people, with a single individ-

ual of Caucasian ancestry dominating this composite195. This “reference genome”

cannot represent the broad spectrum of human genome population stratification196.

However, the well-practiced method of minimizing errors and limiting the number of

genetic variants is to filter variable sites with a minor allele frequency (MAF) com-

puted against a reference genome. This practice has been shown to confound the

results by ignoring more common variants with smaller effect sizes or common vari-

ants with high epistasis (i.e., rare combination of two common or rare variants)197.

By contrast, deleterious scores from PG-GWAS are pan-genomic, meaning they are

not dependent on the reference genome. Moreover, PG-GWAS operates on graph-

structured data allowing any epistasis to be included in the analysis of genomic

variants. It utilizes an attention-based architecture that effectively pools networks’

heterogeneous local features, elucidating how genomic variants are organized into

functional pathways and contribute to cellular dysfunctions. Finally, PG-GWAS is

built on an optimized, distributed, and GPU-accelerated back-end computing archi-

tecture to enable the processing of extremely large data sets required for this type

of analysis. Here, we showed PG-GWAS was accurate and robust in identifying

deleterious variants using a curated set of known pathogenic variants in the human
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population. Furthermore, we provide a proof-of-concept for rare heritable complex

diseases, in which we sequenced and annotated the whole genomes of cohorts of

Huntington’s disease (HD) and of Niemann-Pick type C1 (NP-C1) patients with the

distinct onset and manifestation of the disease and successfully identified genetic

modifiers consistent variants with the current literature for both diseases.

Figure 3.1 | Overview of PG-GWAS. 1: Binary Sequence Alignment Map (BAM) or
Variant Call Format (VCF) files are first parsed into pan-genomic haplotypes where each
nucleotide of a fixed length Pm string is grouped into a gene-specific k-mer with coordinate
On. 2: K-mers then receive unique contextualized embedding scores that encode the
likelihood of deleterious effects on respective gene products. 3: Graph representation
of individuals’ genomes, comprising genes as nodes, contextualized k-mers embedding as
node features, and tissue-specific gene-gene interactions as edges, are used to assemble
regulatory networks. 4: Multi-head graph attention network mechanism sums up and
normalizes the collective effects of all interactions in the network and assigns each node a
new score.
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3.3 Results

3.3.1 Overview of the algorithm

PG-GWAS is a supervised machine-learning method for annotating and prioritiz-

ing local and global tissue-specific genomic features (a combination of variants and

genomic interactions) that contribute to the manifestation and onset of complex

heritable diseases. PG-GWAS operates on a graph where nodes represent genetic

variations contextualized embedding, and edges represent functional relationships

between nodes and output that are pooled and updated numerical values of genetic

variation and genomic interactions (Section 3.3.3). These features in latent space

are of much lower dimension than the original gene node features comprising all pos-

sible nucleotides for a sequencing region, allowing them to be meaningfully analyzed

and compared.

The functional consequence of genetic variants depends on both effects of amino

acid substitutions, regulatory effects, metabolic pathways, and epistasis between

genes198. PG-GWAS uses multi-head graph attention neural networks, a combina-

tion of densely connected convolutional neural networks199 layers and attention200

layers to combine the effects of genetic variation and interactions of any provided

context as the backbone network. As illustrated in (Figure 3.1), PG-GWAS re-

quires aligned sequencing data as an input indicating the deletion or insertion of a

nucleotide or sets of nucleotides at a given position P ∈ N of the whole genome

sequence. These haplotypes are then converted into gene-specific k-mers (defined

at Section 3.5.1) and constructed as constrained (no overlapping k–mers) De Bruijn

graphs201 for efficient storage and retrieval, where each node on the graph is as-

signed a gene-specific index O ∈ N and embedding score. Embedding scores rep-

resent deleterious effects of the k-mers in their biological context (Section 3.5.2)

and are computed by training a model to learn gene-specific embedding of genetic
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variants using the dataset of known relationships among human genome variations

and phenotypes202. Any prior knowledge of the node’s interactions (here a de-novo

cell type-specific regulatory network) can then be incorporated in the final network,

whether each node is further branched with various gene specif k-mers or any other

information. Final scores are then computed by pooling and normalizing values of

all nodes by the multi-head graph attention network mechanism194 as described in

the Methods, (Section 3.3.3) to output the final predictive Normalized Embedding

Score (NES) of each gene for the phenotypes under investigation.
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Figure 3.2 | Overview of PG-GWAS data architecture. 1: Row-oriented genomic
records for each nucleotide and nucleotide position are processed using a shared memory
multi-threaded implementation and stored as column-oriented records. 2: These records
are then annotated with gene tags using a distributed SQL query engine. 3: Unique com-
binations of nucleotides for distinct tags are assembled into constrained De Bruijn graphs
where each node in the graph (Ox) represents a gene-specific k-mer. 4: K-mers were as-
signed a unique contextualized embedding score that encoded the likelihood of deleterious
effects on its respective gene and the results were stored as sparse matrices. 5: By incor-
porating the tissue-specific gene regulatory networks, personalized graph representations
of individuals’ genomes that integrate contextualized embedding scores are constructed
and batched by zero padding.
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3.3.2 Benchmarking

Multi-node parallel architecture allows fast data retrieval, annotation,

and batch processing:

The human nuclear genome is approximately 3 200 000 000 nucleotides long, divided

into 23 homologous pairs of linear chromosomes, hence requiring the processing of

terabytes of data, depending on the sequencing depth and genome coverage203 (ap-

proximately 150 terabytes of data to analyze 1000 individuals’ genomes genetic

variants only204,205). Indeed many software tools have been developed for querying,

variant calling, and file format conversion and manipulation of these data files. How-

ever, tools are not particularly designed with batch processing in mind, as would be

required for efficient hardware utilization in deep learning-based analysis206. There-

fore, this study set out to analyze approximately 67 000 whole genome sequences

devising a data architecture and developing a suite of helper software to allow almost

linear computing scalability depending on the number of CPU cores available.

Firstly we optimized and reimplemented the currently fastest option available

BAM/VCF read-write207,208 C native library by adding shared-memory multipro-

cessing209 capability and converted row-oriented sequencing alignment and variant

formats to columnar-oriented files. This further enabled us to utilize distributed SQL

query engines210 for annotating gene-specific k-mers and assembling constrained De

Bruijn graphs of these k-mers (Figure 3.2-1,2). Moreover, the original implemen-

tation of the Word2Vec algorithm used here for extracting low-dimensional vector

representations of the k-mers is parallelized for multi-core CPU architectures but

is based on vector-vector operations that do not efficiently use computational re-

sources211. To remedy this issue, we instead adopted the Hogbatch approach212 that

uses mini batching, negative sample sharing, and expressing the problem using ma-

trix multiplication operations (Figure 3.2-3). Altogether these approaches allowed us
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to scale up the computation time nearly linearly across cores and nodes as opposed

to the exponential time required for single-node architecture (Figure 3.3).

A complete representation of a cell’s regulatory network can amount to 23 000

gene nodes connected to more than 30 million nucleotides (a large adjacency ma-

trix or incidence matrix representing all the edges plus a matrix of node features).

Therefore, another critical issue was storing these heterogeneous graphs consisting

of several disjoint node sets V1 . . . , Vn and edge setsE1 . . . , Em in a way that allows

batch processing for optimized GPU usage. Purposefully, we represented and stored

regulatory networks as ragged tensors of integers (tensors with non-uniform shapes),

in the form of Protocol Buffers, language-neutral, platform-neutral, serialized struc-

tured data213, which could readily be converted to zero padded batches of data

(Figure 3.2-5). Courtesy of this approach, on average, we stored final regulatory

graphs with only 1.6 MB per whole human genome (as appose to ≈ 30 millions × 8-

16 bit per nucleotide excluding indices) . This allowed training our graph attention

network on batches of 448 whole human genomes on 80 GB A100 GPUs.
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Figure 3.3 | Data processing speed for different numbers of CPU cores. Line
plot shows exponential growth of the time required in hours for processing nucleotide
records of 1000 individuals stored at separate files into De Bruijn graphs using a single-core
implementation. Green and orange lines display the same process with a much gentler slob
by using the PG-GWAS shared memory multi-threaded data processing implementation.
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(i)

(ii)

Figure 3.4 | Loss function value for different graph attention network architec-
tures used in PG-GWAS. i: Bar plot illustrate Hinge loss and Binary cross entropy loss
after 50 epochs for one head one layer (1H_1L), one head two layers (1H_2L), four head
three layers (4H_3L) and five head three layers (5H_3L) architectures of the multi-head
graph attention network. ii: illustrates Hinge loss and Binary cross entropy loss for the
same set of architectures as (i) after 100 epochs. All the different architectures of the
models converged before 100 epochs.
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PG-GWAS is accurate and stable during training:

We curated a training dataset comprising pathogenic mutations, genetic variants

with clinical significance plus benign missense variants from Online Mendelian In-

heritance in Man (OMIM)28, and ClinVar datasets202 but including only the variants

with clinical evidence. To balance the positive and negative sets, we randomly added

variants from the ClinVar dataset to the genome of 3110 healthy individuals from

different genetic backgrounds (Section 3.5.1). In total, two cohorts of 50, 000 indi-

viduals with 24, 600 complete penetrance nonsense and frameshift mutations, 154

824 missense, nonsense, and frameshift genetic variants with known clinical signifi-

cance, and 159 304 benign missense mutations covering 18458 genes were simulated

in this manner for training (80, 20, training validation splits, where test data set

were patients data).

We implemented the model and training algorithms using TensorFlow to imple-

ment best practices for data automation, model tracking, performance monitoring,

and model retraining86. We used a stochastic gradient descent with momentum

algorithm214 to update the model’s parameters at an initial learning rate of 7e-5

(momentum=0.9)215. We applied early stopping with hinge loss216 for training algo-

rithms on datasets with loss function optimization as a metric to avoid overfitting

and experimented with different architectures to study the model’s accuracy. We

observed that the model loss function would only stay stable with up to 5 attention

heads and three dense layers with 14,320 trainable parameters as defined in the

Methods (Section 3.5.1) or returned undefined loss. On the other hand, the limiting

factor for increasing the number of hidden units in the dense layers of the model was

the limited memory of the used GPU. Nonetheless, as illustrated in (Figure 3.4),

all models with different architectures are converged after roughly 100 epochs in-

dicating attention architecture utility in learning outcomes of genomewide graphs.

Overall our model with five attention heads and three dense layers seems to outper-
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form other architectures by a considerable margin, with the AUC-ROC equal to 0.71

compared to the second-best architecture with four attention heads and three dense

layers only achieving AUC-ROC equal to 0.67, a somewhat moderate improvement

given the small architectural difference. A model with one attention head and two

dense layers with AUC-ROC equal to 0.54 showed the worst performance in com-

parison to the model with only one attention head plus one dense neural network

layer with AUC-ROC equal to 0.60, most likely due to the shallowness of the dense

layer (low number of trainable variables) in comparison to the multi-head attention

layers of the model and overfitting217.
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Figure 3.5 | Receiver Characteristic Operator (ROC) and Area Under the
Curve (AUC-ROC) for PG-GWAS classifications. ROC plots the true positive rates
against false positive rates of of affected genes at various threshold values. Coordinate (0,1)
of the ROC space presents 100% sensitivity (no false negatives), 100% specificity (no false
positives) and a model with higher AUC-ROC has a better classifications performance. In
contrast black line mimics the performance of a random classifier. ROC plotted for one
head one layer (1H_1L), one head two layers (1H_2L), four head three layers (4H_3L) and
five head three layers (5H_3L) architectures of the multi-head graph attention network
used in PG-GWAS and AUC-ROC indicated as ”area” in the graph’s legend shows 5H_3L
yields highest accuracy.
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3.3.3 Precise graph-based annotation

PG-GWAS accurately capture INDEL and missense deleterious

mutation in causal genes:

By allowing PG-GWAS to assign predictive Normalized Embedding Score (NES) to

deleterious genetic variants, we expected the full penetrance causal mutation to be

annotated with the highest score in a genome graph. To test this hypothesis, we

sequenced the whole genome of patients in two distinct cohorts of rare and ultra-rare

complex heritable diseases. We annotated the genome of these patients with PG-

GWAS because PG-GWAS had never seen these data before and was not specially

trained on disease-causing mutations of genes for these diseases. We first sequenced

and annotated the genome of 29 newly recruited patients of Huntington’s disease

(HD) as described in the Methods. HD is a rare inheritable disease characterized

by multiple insertions of adjacent CAG repeats in the HTT gene218. Indeed for HD,

all patients with longer than normal CAG repeats length in their genome received

a high NES for the mutated htt. Provided that the NES is not only affected by the

deleterious effect of a genetic variant, we expected to observe that some patients with

longer CAG repeats receive a higher NES. This difference is partly explainable by

the stochastic nature of trained networks to predict the deleterious effect of genetic

variants214,219. More importantly, the NES is updated by pooling information from

the entire network (i.e., the deleterious scores of neighboring nodes in the graph),

so it is not independent of other variants in the genome.



Results 91

(i)

(ii)

Figure 3.6 | Precise annotation of the genome-wide graph of NPC-C patients
with varying npc1 mutation. Manhattan plot shows each gene’s predictive normalized
embedding score after applying the multi-head graph attention mechanism. Each gene
node in the input file was connected to K-mers with contextualized embedding scores,
encoding the likelihood of deleterious effects on that gene, while edges incorporated the
tissue-specific gene regulatory interactions of brain cells. Pooled scores are aggregated,
normalized, and plotted on the y-axis. i: shows the highest predictive score for npc1 gene
in this cohort was assigned to patient NPC05 with the T/TTTTT frameshift insertion
mutation at Chr 18:23563989. ii: the lowest predictive score for npc1 gene in this cohort
was assigned to patient NPC14 with disease-causing single nucleotide variant G/A at
Chr18:23520540.
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Bearing in mind that HD often involves long insertion-deletion mutations (INDELs)

in the htt gene, we suspected that these could result in inflated deleterious scores

for the k-mer representing INDELS variations (due to high entropy change of DNA

sequence after INDELs)220, biasing our estimation of PG-GWAS accuracy by bal-

looned NESs. Thus, we turned our attention toward another heritable complex

disease and sequenced the whole genome of 13 newly recruited Niemann-Pick type

C (NPC-C) patients with one homologous or two heterozygous loss of function mu-

tations on npc1. Unlike the relationship of CAG repeat lengths and disease severity

in HD, there is generally no linear relationship between the type of loss of function

NPC1 gene mutation and juvenile, late-onset, visceral and neurological symptoms

of NPC1 disease221. More than 400 disease-causing mutations covering the pro-

tein sequence of NPC1 have been described, but these deleterious genetic variations

are mostly missense mutations202, allowing us to narrow the investigation of the

robustness of PG-GWAS for single nucleotide genetic variations. In so doing, we

successfully identified damaging npc1 genes in all the NPC-C patients using the

same trained model that was used for annotating HD patient genomes and observed

normalized embedding score between 0.132 (Figure 3.6ii) to 0.238 (Figure 3.6i) for

npc1 and a normalized embedding score of 0 for HTT. This result further indicated

that PG-GWAS was robust in identifying and prioritizing full penetrance deleterious

mutation among whole genomes. Notably, conventional GWAS, having no notion

of the deleterious effects of each variation, fails to identify both the high penetrance

causal genes and disease-modifying variants in a small sample size222 such as our

NPC-C and HD cohorts due to multiple testing and conservative correction. This

has been illustrated in Figure S2, Figure S1 and Table S1 where we used GWAS

with Linear, Linear Mixed a Bayesian model and different null hypothesis testing

techniques as described in the Methods, all failing to identify any variants above the

recommended threshold223 of pval < 5 × 107.8 after multiple testing correction224.
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Figure 3.7 | An overview of normalized embedding score. PG-GWAS operates
on a graph representing deleterious genetic variants in a biological context, defined as the
regulatory network of gene-gene interactions. On the left genes of interest are the slightly
bigger nodes connected to gene-specific k-mers, each encoding the deleterious effect of the
genetic variants in a latent space as a vector. One the right we used three dense layers and
five attention heads to compute normalized embedding scores for each gene by pooling the
effects of all genetic variants and interacting neighbors represented with an embedding
score next to each gene node.
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Patient id htt CAG repeat length UHDRS AGE AT DCL4 Normalized severity

HD001 0.454 43 NA 51 1

HD002 0.256 42 34 55 0.6

HD003 0.245 41 7 72 0.3

HD004 0.189 42 NA 56 0.3

HD005 0.253 43 7 52 0.3

HD006 0.253 43 NA 50 0.6

HD007 0.332 52 45 28 0.9

HD008 0.255 44 NA 48 0.6

HD009 0.263 41 31 65 0.2

HD010 0.505 46 55 40 0.6

HD011 0.243 42 24 50 0.2

HD012 0.256 41 10 60 0.3

HD013 0.229 42 10 55 0.5

HD014 0.242 40 13 52 0.2

HD015 0.227 41 2 NA 0.5

HD016 0.194 41 19 61 0.2

HD017 0.136 40 12 45 0.2

HD018 0.179 41 29 55 0

HD019 0.251 43 63 60 0

HD021 0.03 39 11 67 0.2

HD022 0.273 42 6 35 0.5

HD023 0.246 41 NA 67 0.5

HD024 0.263 43 32 59 0.2

HD025 0.262 41 22 52 0.3

HD026 0.169 49 59 46 0.5

HD027 0.258 43 5 51 0.2

HD028 0.292 47 60 43 0.5

HD029 0.241 40 NA 41 0.6

HD051 0.245 41 NA NA NA

Table 3.1 | Clinical information of Huntington’s disease cohort. CAG repeat
length, normalized embedding scores of deleterious HTT gene from PG-GWAS, UHDRS,
DCL-4 onset age and normalized severity score (NSS) were tabulated. The effect of CAG
repeat length had been accounted for using Langbehn et al. model where patients with
a more severe HD or an earlier motor onset received a higher NSE dependent on CAG
repeat length.
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PG-GWAS identifies known modifiers of complex diseases:

Huntington’s disease is responsible for the progressive breakdown (degeneration) of

nerve cells in the brain and broadly impacts a person’s functional abilities225. HD

symptoms can vary in onset and manifestation and commonly appear when individ-

uals are in their 30s or 40s. In rare cases, such as “juvenile HD”, symptoms develop

before age 20, and in 4.4-11.5% of individuals, they appear only at over 60 years

of age (late-onset patients). HD “age at onset” and disease severity in individuals

predominantly result from the uninterrupted longer-than-normal length of the CAG

repeats; however, depending on what phenotypic measure is used, this high pene-

trance genetic abnormality only explains approximately 56% of the heritability for

HD varying phenotypes226.

To identify potential loci responsible for this missing heritability, we first quan-

titatively measured the age of onset and disease severity in our HD patients cohort

and defined a Normalized Severity Score (NSS). This was a CAG length-independent

score normalized by the age of the patients. Here we incorporated the Unified Hunt-

ington Disease Rating Scale (UHDRS), a standardized assessment consisting of 31

items rated on a scale from 0 to 4 to capture the age of onset plus a wide range of

phenotypic measures across motor, cognitive, behavioral, and functional symptoms

at different time points along the course of the disease227 (Table 3.1). Furthermore,

for calculating this NSS, we included age at a Diagnostic Confidence Level equal to

4 (DCL4), a clinical score that indicates unmistakable signs of HD-related motor

impairments with 99% confidence. At the outcome, we accounted for the length of

CAG repeats contribution to disease severity based on Langbehn et al. model228. We

imputed DCL4 or UHDRS if either was missing and computed the final NSS score

values as described in the Methods section. Two patients (HD0051 and HD0029)

were eventually excluded for lack of sufficient clinical information (Table 3.1).

We then identified known modifiers of HD diseases in the annotated networks of
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each patient and tried to explain the low or high NSS assigned to each patient using

known functions associated with each gene. Significantly fan1 has been established

as a modifier of HD218,229. The FAN1 role is thought to be in DNA interstrand cross-

link repair and encodes a protein with endonuclease (cleaving the phosphodiester

bond within a polynucleotide chain) and exonuclease (cleaving nucleotides one at a

time from the end of a polynucleotide chain) activity230. Taking into account that

HD is not caused by a simple loss of function of the HTT alleles, we surmised it is

possible that FAN1 can play a part in decreasing the effect of toxic polyglutamine in

HD patients231,232. Therefore, the earliest age at DLC-4 in our cohort of patients for

patient HD007, and higher than the median NES score for patient HD015, might be

explained by the high predictive normalized embedding score assigned to the fan1

gene in the genomes (Figures 3.8i to 3.8ii). Similarly, rhoa we identified in patient

HD006 a high predictive normalized embedding score that has been shown to affect

many highly expressed genes in the nervous system contributing to neurodegenera-

tion in Parkinson’s, Alzheimer’s and Huntington’s disease233,234. Notably, tars2 was

also unique in this cohort, with a high predictive embedding score in the genome

of patient HD006, suggesting the possibility of mitochondrial-related functions in

determining the onset and symptoms of the diseases (Figure 3.8iii).
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(i)

(ii)
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(iii)

Figure 3.8 | Precise annotation of the genome-wide graph of Huntington’s dis-
ease patients with varying CAG repeat lengths. Manhattan plot shows each gene’s
predictive normalized embedding score after applying the multi-head. Each gene node in
the input file was connected to a K-mers as contextualized embedding score, encoding
the likelihood of deleterious effects on that gene for a given k-mer. Edges incorporated
the tissue-specific gene regulatory interactions of brain cells in these genome-wide graphs.
Pooled scores are aggregated, normalized, and plotted on the y-axis. i: deleterious htt
gene was assigned the second highest score of 0.332 for H007 with 52 CAG repeat length,
just below fan1(Table 3.1). ii: shows the two genes with the highest scores, including fan1
HD015. iii: rhoa and tars2 were identified as susceptibility genes.
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3.4 Discussion

Here we introduced PG-GWAS, a DNA sequencing data annotation method based

on a graph attention network. PG-GWAS allowed the pooling of information from

genetic variant deleterious effects on the downstream gene, regulatory interaction,

and epistasis within a cell and showed robustness in identifying full penetrance

causal and disease-modifying genes. PG-GWAS success relied on two main underly-

ing components: a tissue cell type-specific gene-gene regulatory network capturing

interaction among genes and the skip-gram model235 encoding deleterious effects of

genetic variants in a way suitable for assembling each person’s genome by augment-

ing the backbone regulatory network.

As explained in chapter one, we obtained the count matrix of single-cell RNA-

seq data from publicly available data to construct the backbone regulatory network

used for the whole genome graph of patients. Regardless, data sets, such as above,

comprising data from the often healthy cells at different developmental stages from

broad tissue sections, can misrepresent the dynamic of diseased cells236. We tried

to address this shortcoming by clustering cells into relevant groups using DESC89.

However, it is plausible that obtaining spatially resolved RNA-seq237,238 data from

each patient where possible or models of HD in tissue culture should improve the

accuracy of the constructed regulatory networks.

We trained the skip-gram model of PG-GWAS on a balanced data set of known

benign genetic variants, variants with function loss, and variants with clinical con-

sequences, made into whole genomes by incorporating variants randomly into the

genome of healthy individuals. This was under the assumption that the frequency of

each variant was determined by evolutionary constraints (more damaging mutations

occur less often). While that assumption is valid, this approach did not expose the

model to a training data set representing the actual frequency of a combination of
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variants and did not capture the co-causation of comorbid clinical effects for genetic

variants. We were aware of this shortcoming and had trained PG-GWAS on DNA

sequences of more the 70,000 patients of rare diseases with comprehensive clinical

records. This dataset contained real haplotypes with real medical consequences,

including comorbid phenotypes. Due to privacy issues, we could not present those

data here and are in the process of identifying solutions for exporting the trained

model without jeopardizing patients’ privacy per the ethics approval of the third

party owning that dataset.

Another point to address is using the Word2Vec algorithm for embedding ge-

netic variants. Indeed like natural language, naturally evolved DNA sequences are

molecular elements exhibiting “word” frequency, preserving the strings entropy, and

preserving semantic information about the input sequence. Nonetheless, a protein

made from the recipe encoded in the genome is much more than a code in the pri-

mary sequence of letters but also is a three-dimensional structure affected by order

of particular amino acids affecting proper functional folding25. Therefore, we used

neural networks that are capable of learning long-range intra-molecular dependen-

cies. In prediction applications from primary sequence, RNNs have been shown

adept in the prediction of the folding of proteins in native three-dimensional struc-

tures, successfully matching crystallographic and NMR methods239. Notably, the

prediction of protein structures as a graph inference problem in 3D space in which

residues distance define the edges of the graph181 achieved extremely high accuracy.

We expect incorporating such models into the architecture of PG-GWAS would be

desirable.

Lastly, here for practical reasons, such as training time and memory limitation

when feeding the sparse tensors during training (input tensors had to be zero-padded

before batching due to how Cuda cores are arranged in GPUs240), we constrained

the scope of this analysis to only the coding region of the genome. Indeed, tackling
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the more challenging problem, prediction of functional consequences of non-coding

variants would only be possible with enough end-to-end training data to confidently

annotate the effects of these mutations on downstream function. This is conceptually

possible within the PG-GWAS framework of the approach presented here. Although

it is a daunting task to obtain a fully observable network of the whole genome with

its enormous information load and complex semantics of irregular interaction be-

tween roughly 3 200 000 000 nucleotides (nodes) per person, effective heterogeneous

network sampling is possible. This may be achieved by considering the conditional

dependency of node types and link types that have proven efficient for dealing with

such networks241. Maybe, for now, scaling the graph attention network (GAT) mod-

els to large graphs though difficult and an active area of research, surely a suite of

techniques will soon be available for representing arbitrary heterogeneous graphs

that can scale to whole-genome with billions of nodes of edges242.
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3.5 Methods

3.5.1 Datasets

Cohorts of patients with rare complex inheritable diseases

To investigate the robustness and predictive efficiency of PG-GWAS, we obtained

two separate ethics approval from the Human Research Ethics Committee at the

Royal Melbourne Hospital (HREC Project 2018.266) and recruited 29 symptomatic

participants with confirmed mutant htt genes (CAG repeat > 36) plus 13 genetically

defined NPC1 patients. Written consent was obtained for all participants in this re-

search, and genomic DNA extracted from venous blood was used for whole-genome

sequencing using the Illumina TruSeq DNA PCR-Free library preparation and Il-

lumina HiSeq X Ten sequencer, generating 150 bp paired-end reads with a mean

coverage of 30X for 95% of the genome at Australian Genome Research Facility. Se-

quencing reads were mapped to the RefSeq release 215243 reference human genome

hg38 using BWA-MEM244 filtered to only include nucleotide coordinates with > 8x

coverage and Phred consensus quality > 25. As described by Yun et al.,245 variants

were called using DeepVariant149 version 1.4.

Whole genome training data set

Whole 30X genome sequences of 1572 females and 1538 males with different genetic

backgrounds, including 218 Gambian Mandinka, 114 Southern Han Chinese, 113

Luhya, 112 Telugu, 112 Toscani, 111 Tamil, 111 Yoruba, 109 Dai Chinese, 109 Gu-

jarati, 109 Esan, 107 Puerto Rican, 106 Han Chinese, 105 Colombian, 105 Iberian,

104 Japanese, 104 Punjabi, 104 British, 102 Bengali, 102 Finnish, 101 Kinh Viet-

namese, 101 CEPH, 100 Gambian Jola, 100 Gambian Fula, 100 Gambian Wolof, 98

African Caribbean, 96 Mende, 91 Peruvian, 73 Mexican ancestries and 68 African

ancestries were obtained from246. UCSC liftOver was used to convert genomic co-
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ordinates to RefSeq release 215.

Gene specific k-mers corpus of pan-genomic haplotypes

1,053,623,523 genetic variants validated in the RefSNP dataset were used to form

every possible unique uninterrupted set of nucleotides (haplotype) along the coding

region of RefSeq release 215243. These haplotypes were clustered into gene-specific

bags of k-mers and added as a distinct vocabulary of the corpus of pan-genomic

haplotypes.

3.5.2 Genomic variants contextualized skip-gram

embedding

We implemented parallelized247 Word2Vec’s248 skip-gram model to compute haplo-

types’ (as defined in Section 3.5.1) contextualized embeddings within a gene-specific

bag of k-mers. Under the assumption that the less frequent haplotypes are under

evolutionary pressure249, the training objective of the skip-gram model was to find

haplotypes’ representations in vector space such that common variants of a genomic

locus are placed closer to each other to indicate their less likely deleterious effect

on the gene (i.e., predict the more common haplotypes for the more common con-

text(neighboring) haplotypes). The model is trained on skip-grams of haplotypes,

which are n-grams (n indicating a window range) that allow neighboring haplotypes

to be skipped. Here n is set to 10 as recommended by Mikolov et. al., for s small

corpus250. To this end, we simulated a corpus comprising gene strings with different

arrangements of haplotypes, where the global Minor Allele Frequency (MAF) of a

variant determined the rate of occurrence of haplotypes containing genomic variants.

Sequences of haploid indices (list of integers) were then transformed into tuples of

words of the (haplotype, in the same window), labeled 1–positive samples and (hap-

lotype, random haplotype from the gene corpus), labeled 0–negative samples and

used for training the skip-gram model. Formally, for a gene with the arrangement
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of haplotypes such as h1, h2, h3, . . . , ht, the goal was to maximize the average log

probability
1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p (ht+j | ht) (3.1)

where c is the size of the training context and p (ht+j | ht) is defined as the soft-max

function:

p (hO | hI) =
exp

(
v′

hO

>vhI

)
∑H

h=1 exp (v′
h

>vhI
)

(3.2)

Here, vh and v′
h are the input and output vector representations of h, and H is the

number of unique haplotypes in the gene corpus.

Although for computational convenience herein, the above function was approx-

imated by negative sampling250, a simplified version of noise contrastive estima-

tion251, defined as

log σ
(
v′

wO

>vwI

)
+

k∑
i=1

Ewi∼Pn(w)
[
log σ

(
−v′

wi

>
vwI

)]
(3.3)

for f(x) = 1/(1+exp(−x)) and with the noise distribution Pn(w) as a free parameter.

3.5.3 Graph attention network (GAT)

The inputs for the attention layer are gene nodes with a set of features, namely

contextualized gene-specific haplotypes from the word2vec model

vh =
{

v⃗h
′
1, v⃗h

′
2, . . . , v⃗h

′
N

}
, v⃗hi ∈ RF (3.4)

where N is the number of genes, and F is the number of genetic variants. This layer

outputs

vh′′ =
{

v⃗h
′′
1, v⃗h

′′
2, . . . , v⃗h

′′
N

}
, v⃗h

′′
i ∈ RF ′ (3.5)

where F ′ cardinality was set to 20. Initially, multiple linear transformations (dense
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layer) parameterized by a weight matrix W ∈ RF ′×F was used for preprocessing

every node, and masked attention (only attending neighboring nodes one stride

away, including the node) was implemented such that the normalized importance of

node i’s features to node j were computed as

αij =
exp

(
LeakyReLU

(−→a T
[
Wh⃗i‖Wh⃗j

]))
∑

k∈Ni
exp

(
LeakyReLU

(−→a T
[
Wh⃗i‖Wh⃗k

])) (3.6)

We Incorporated multi-attention heads as above, and once normalized attention

coefficients were computed for each head then, these numbers were used to output a

linear combination of the features corresponding to them, named here as predictive

normalized embedding score features for every node by averaging

h⃗′′
i = σ

 1
K

K∑
k=1

∑
j∈Ni

αk
ijWkh⃗j

 (3.7)

3.5.4 Normalized Severity Score (NSS)

To calculate the normalized severity score as an indication of HD disease onset and

severity, we used DLC4 and UHDRS, two standardized clinical measures of HD.

We combined both of these scores (imputed one from the other if one was missing

as described elsewhere252). We then accounted for the contribution of CAG length

using228, as formally defined below.

NSS =

dlc4− 1
N

∑N

i=1(dlc4i)√
1
N

∑N

i=1(dlc4i− 1
N

∑N

i=1(dlc4i))2
+ uhdrs− 1

N

∑N

i=1(uhdrsi)√
1
N

∑N

i=1(uhdrsi− 1
N

∑N

i=1(uhdrsi))2

e9.556−0.1460×CAGl (3.8)

3.5.5 Linear models for conventional GWAS

For the linear mixed model, we tested for alternative hypothesis H1 : β 6= 0 against

the null hypothesis H0 : β = 0 for each genetic variant one at a time, using one of



the three commonly used test statistics (Wald, likelihood ratio or score) by fitting

univariate linear mixed mode of the following form:

y = Wα + xβ + u + ϵ; u ∼ MVNn

(
0, λτ−1K

)
, ϵ ∼ MVNn

(
0, τ−1In

)
(3.9)

where y is a vector of n dimensions for n individuals; W = (w1, · · · , wc) is an n × c

matrix of fixed effects; α is c − vector of coefficients and intercepts; x is a vector

of genetic variants; β is the effect size of the genetic variants; β is the effect size of

the variant, u is vector of random effects; ϵ is an n − vector of errors; 7→ MV Nn

represent the n-dimensional multivariate normal distribution; τ− is the variance of

the residual errors; λ is the ratio between the two variance components and In is an

n × n identity matrix.

3.5.6 Bayesian Sparse Linear Mixed Model

For Bayesian Sparse Linear Mixed Model, a linear model of the following form was

fitted as described elsewhere253. Briefly,

y = 1nµ + Xβ + u + ϵ (3.10)

βi ∼ πN
(
0, σ2

aτ−1
)

+ (1 − π)δ0 (3.11)

u ∼ MVNn

(
0, σ2

b τ−1K
)

(3.12)

ϵ ∼ MVNn

(
0, τ−1In

)
(3.13)

here µ is the NSS, X is an n × p matrix of genotypes measured on n individuals at

p genetic markers.

106
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3.6 Supplementary information

(i)

(ii)
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Figure S1 | linear effect of SNPs. Manhattan plot shows associations between single
nucleotide polymorphisms and NSE by fitting a univariate linear model to test alternative
hypothesis H1 : β 6= 0 against the null hypothesis H1 : β = 0 for each SNP one at a time.
Pval using i: likelihood ratio ii:pscore and iii: Wald test were calculated but did not identify
any SNPs at the set significance threshold (dotted black line).
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(i)

(ii)
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(iii)

Figure S2 | Mixed linear effect of SNPs. Manhattan plot shows associations between
single nucleotide polymorphisms and Huntington’s NSE by fitting a univariate linear mixed
model to test alternative hypothesis H1 : β 6= 0 against the null hypothesis H1 : β = 0 for
each SNP in turn. i: likelihood ratio ii:pscore and iii: Wald were used but did not identify
any SNPs at the set significance threshold (dotted black line).
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4.0.1 Synthesis

This study aimed to develop a pipeline that allows identifying rare and common

disease-modifying genetic variants from DNA sequencing data. While genome-

wide association studies are the most common approach employed for such goal,

GWAS methodology in the core is not equipped to handle the technical noise in-

herent in high-throughput sequencing platforms and is not conceptually designed to

process large quantities of high-dimensional genomic data representing a complex

nexus of gene regulatory networks140,186. Moreover, ad-hoc measures to enhance

the power of GWAS have been adequate to a certain extent but introduced unique

challenges187. For example, filtering GWAS results with pathway analysis heavily

relied on off-the-shelf gene-gene interaction networks while constructing GRNs to

illustrate complex interactions typically involved merging non-standardized high-

throughput static datasets, resulting in a high number of false positive interactions

and lacking data points or insights into cellular developmental stages186.

Logically I set out 1) to construct an accurate Gene Regulatory Network (GRN)

that encompasses all significant cis- and trans-regulatory interactions in a genome,

thereby enabling epistasis modeling, 2) to develop a precise whole-genome annota-

tion tool, which is crucial for identifying cellular functions associated with the onset

and manifestation of complex heritable diseases and 3) to discover known and novel

potential disease-modifying genetic variants in patients’ genomes as proof of concept

for my strategy.

For first aim to better understand these complex dynamic regulatory relation-

ships within the genome, specific to tissues or cell types, the Non-Stiff Dynamic

Invertible Model of CO-Regulatory Networks was created here. This model permit-

ted unrestricted neural network structures and training, allowing for more exten-

sive gene sets, and was successfully trained on non-homogenized bulk tissue-specific

RNA-seq or single-cell RNA-seq, representing the continuous developmental states
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of cells. Given that the NS-DIMCORN model utilized ordinary differential equations

to simulate these highly dynamic systems by warping a multivariate distribution,

a continuous-time invertible model with unbiased density estimation was generated

solely based on RNA-seq read-count data, enabling time-flexible sampling of each

gene’s expression level for de-novo construction of cell-specific gene regulatory net-

works.

For the second and third aims, positional embedding techniques were employed

to convert each person’s genomic variations into continuous numerical vectors, as-

signing each genomic variant a unique context-specific score representing the likeli-

hood of its impact on related gene products. Unique to this thesis, these scores were

pan-genomic and constructed using a k-mer representation of all haplotypes, inde-

pendent of any “reference genome” based solely on the evolutionary constraints of

each variant. Next, using the algorithmic provisions developed and described before

a graph representation of individual genomes was created, integrating genomic vari-

ation scores, tissue-specific gene-gene interactions, and regulatory networks (derived

from GRNs) to collectively facilitate the study of genomic variants while accounting

for epistasis. In the last chapter, Precise Graph-based Genome-Wide Annotation

Software (PG-GWAS) was developed and exhibited promising results in annotating

every person’s genome unaffected by sequencing cohorts’ statistical moments which

was in line with my third aim. It is to note that the graph attention mechanism was

the primary mechanism utilized in PG-GWAS to identify the most critical interac-

tions within these networks, enabling the annotation of whole-genome graphs and

the determination of the most significant genomic features (i.e., interacting gene

groups) within each genome that could be responsible for varying symptoms and

disease onset in patients with the same causative mutations.
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4.0.2 Future directions

Although I have successfully benchmarked and demonstrated the efficacy of the

proposed methodology in this thesis, I believe the following would be the next logical

steps in improving the overall usability of the my method for clinical diagnosis and

prognosis:

1. PG-GWAS was initially developed and tested using whole genome sequences

from over 90,000 healthy and diseased individuals with comprehensive longi-

tudinal clinical records. I hypothesized that even if a genomic variation is

structurally deleterious, its pathological effects might remain benign in differ-

ent individuals or exhibit varied influences on disease manifestation and onset

due to the buffering or alteration by other genetic complications. My pre-

liminary results, obtained from the aforementioned datasets, supported this

hypothesis; however, I could not further evaluate these findings due to privacy

concerns stipulated in the contract between Genomic England (sequencing

providers and clinical data providers) and the study participants. Acquiring

such a dataset is crucial for further exploration of my methodology. Alter-

native datasets, such as those from All of US134 are currently available and,

depending on their access policies may be utilized in future research.

2. Preliminary natural language processing embedding techniques, such as the

Skip-Gram mode of Word2Vec, have been effectively employed to embed ge-

nomic variations while preserving their semantic relationships positionally248.

In this approach, the Skip-Gram model predicts the context nucleotide within

a specified window size (gene) for each target k-mer comprising the variants.

This method performs well for smaller datasets and generates satisfactory em-

beddings for infrequent words211,248. Nevertheless, employing a Transformer-

based deep learning architecture, which enables the processing of long-range
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dependencies and context through multiple layers and many parameters, could

better capture the intricacies, patterns, and structures in DNA and protein

language25. Utilizing such a model would also enable the inclusion of non-

coding regions of the genome (excluded herein for technical reasons) and the

pre-training of the model with various information modalities, such as crys-

tallography, as exemplified in the critically acclaimed AlphaFold paper181.

3. GATs used here use attention mechanisms to determine the importance of

each genetic variation when aggregating information from the local interact-

ing genes with structural variations. In GATs, an attention mechanism is

computed based on a shared linear transformation followed by a non-linear

activation function that is then transformed into attention coefficients using

a softmax function, ensuring standardized output194. The primary advantage

of GATs is their ability to adaptively focus on the most relevant neighbors,

allowing for the efficient handling of complex graph structures and heteroge-

neous node features194. However, the attention mechanism is computationally

expensive compared to other graph convolutional networks and hence is lim-

ited by a set number of hops considered194. Message Passing Neural Networks

(MPNNs) is another class of graph-based deep learning models that focus on

the aggregation and update of node features through message passing such

that at message passing phase, each node sends a message to its neighbors

based on its current state and the state of the edge connecting them254. These

messages are then aggregated for each node, and the aggregated message is

combined with the node’s current state during and update phase. MPNNs

are thought to be more effective in capturing the complex relationships be-

tween nodes in a graph, with the long-range driver effect of one node, as they

consider every edge but are not as successful as GATs in prioritizing network

edges and crucial dynamic weighting of neighbors255. Hence, we suggest us-
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ing a message-passing neural network combined with an attention mechanism

that will allow more efficient and accurate prediction of topological proper-

ties of the genome-wide graph of individuals. Indeed we are aware that such

architecture will impose challenging technical difficulties and computational

optimizations that need to be considered in future works.
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