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Abstract 

 

 

As habitat loss, introduced predators, and disease epidemics threaten species worldwide, 

translocation provides one of the most powerful tools for species conservation. However, 

reintroduced populations of threatened species are often founded by a small number of 

individuals (typically 30 in New Zealand) and generally have low success rates. The loss of 

genetic diversity combined with inbreeding depression in a small reintroduced 

population could reduce the probability of establishment and persistence. Effective 

management of genetic diversity is therefore central to the success of reintroduced 

populations in both the short- and long-term. Using population modelling and empirical 

data from source and reintroduced populations of skinks and tuatara, I examined factors 

that influence inbreeding dynamics and the long-term maintenance of genetic diversity 

in translocated populations. The translocation of gravid females aided in increasing the 

effective population size after reintroduction. Models showed that supplementation of 

reintroduced populations reduced the loss of heterozygosity over 10 generations in 

species with low reproductive output, but not for species with higher output. Harvesting 

from a reintroduced population for a second-order translocation accelerated the loss of 

heterozygosity in species with low intrinsic rates of population growth. Male reproductive 

skew also accelerated the loss of genetic diversity over 10 generations, but the effect was 

only significant when the population size was small. Further, when populations at 

opposite ends of a species’ historic range are disproportionately vulnerable to extinction 

and background inbreeding is high, genetic differentiation among populations may be 

an artefact of an historic genetic gradient coupled with rapid genetic drift. In these 

situations, marked genetic differences should not preclude hybridising populations to 

mitigate the risks of inbreeding after reintroduction. These results improve translocation 

planning for many species by offering guidelines for maximising genetic diversity in 

founder groups and managing populations to improve the long-term maintenance of 

diversity. For example, founder groups should be larger than 30 for reintroductions of 

species with low reproductive output, high mortality rates after release, highly 

polygynous mating systems, and high levels of background inbreeding. This study also 

provides a basis for the development of more complex models of losses of genetic 

diversity after translocation and how genetic drift may affect the long-term persistence of 

these valuable populations.
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CHAPTER ONE  
 

Founding events, inbreeding, and their influence on 

translocated populations: An overview 
 

 

1.1 Introduction 

 

Translocation is one of the most powerful tools for species conservation and ecosystem 

restoration. As habitat loss, introduced predators, and disease epidemics threaten species 

worldwide, the movement of organisms from one area to another provides a means of 

increasing the numbers and sizes of populations. However, translocations of threatened 

species generally have low success rates (Griffith et al. 1989; Dodd & Seigel 1991), and 

little is known about the causes of failure or the reasons for success (Armstrong & McLean 

1995). Translocation raises a suite of issues surrounding the species’ physiology, ecology, 

genetics, behaviour, and population and community dynamics that may influence the 

likelihood of success (Dodd & Seigel 1991; Armstrong & Seddon 2008). Thus, a strong 

body of research has emerged to evaluate past translocations and improve the outcomes 

of future projects (reviewed in Seddon et al. 2007). Understanding the influence of 

management actions on genetic diversity in translocated populations is identified as a 

priority for reintroduction biologists (Armstrong & Seddon 2008). In this thesis, I therefore 

examine factors that influence inbreeding dynamics and the maintenance of genetic 

diversity in translocated populations. 

 

1.2 The importance of genetic diversity 

 

Genetic diversity is one of the three forms of biodiversity recognised by the World 

Conservation Union (McNeely et al. 1990), and conserving that diversity has become a 

cornerstone of modern biology. In small, closed populations, relatives inevitably mate 

and genetic drift plays a large role in shaping genetic diversity (Allendorf & Luikart 2007). 

A sudden reduction in population size, or bottleneck, reduces genetic diversity, which 

may lead to decreases in fitness (inbreeding depression), increased extinction risk, and 

reduced evolutionary potential (Frankham 1999; 2005). Although selective forces act to 

maintain genetic diversity at many functional loci (Aguilar et al. 2004), genetic drift may 

outweigh the forces of selection. For example, at small population size, drift becomes the 
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predominant evolutionary force acting on genetic variability in the fitness-related genes 

of the major histocompatibility complex (MHC, Miller & Lambert 2004; Campos et al. 

2006). Losses of genetic variation may substantially reduce the ability of a population to 

respond to novel disease threats, increasing the risk of an epidemic causing a population 

crash (e.g. Spielman et al. 2004). When populations recover to large population sizes, a 

loss of genetic variation reduces the potential to respond to selective pressures 

(Frankham 1999), yet even without additional threats, extinction risk in the wild increases 

significantly with decreasing genetic diversity (Saccheri et al. 1998). 

 

Inbreeding in the generations following a bottleneck may lead to additional losses of 

genetic diversity and inbreeding depression. The deleterious consequences of inbreeding 

in domesticated plants and animals have been recognised since Darwin (Darwin 1896). As 

inbreeding has negative effects on the health and fitness of individuals (Ralls et al. 1979; 

Crnokrak & Roff 1999), it is of great interest to geneticists. In captive populations of 

ungulates, inbred young show much higher mortality rates than non-inbred young (Ralls 

et al. 1979). Captive animals are generally well cared for, and inbreeding may have more 

severe consequences on individuals in the wild (Meagher et al. 2000). Indeed, inbred 

individuals in wild populations often show signs of inbreeding depression, including a 

lower probability of survival (e.g. juvenile red deer, Cervus elaphus, Coulson et al. 1999; 

adult and juvenile pink pigeons, Columba mayeri, Swinnerton et al. 2004; ant queens, 

Cardiocondyla obscurior, Schrempf et al. 2006; cricket nymphs, Teleogryllus commodus, 

Drayton et al. 2007; fledgling house sparrows, Passer domesticus, Jensen et al. 2007), lower 

reproductive output (e.g. song sparrows, Melospiza melodia, Keller 1998; red deer, Slate et 

al. 2000), or increased susceptibility to disease (e.g. Soay sheep, Ovis aries, Coltman et al. 

1999; gazelles, Gazella spp., Cassinello et al. 2001). 

 

Moreover, inbreeding and genetic bottlenecks have negative effects on the stability of 

populations (Keller & Waller 2002; O'Grady et al. 2006). Experimental populations of the 

annual plant Clarkia pulchella with smaller effective population sizes have lower 

germination and survival rates than populations with larger effective population sizes, 

making the smaller populations more prone to extinction (Newman & Pilson 1997). In 

wild populations of adders (Vipera berus), a small isolated population had lower mean 

litter size than non-isolated populations (Madsen et al. 1996). Increasing genetic diversity 

in this isolated population by the addition of conspecifics led to rapid increases in 

recruitment and population size (Madsen et al. 1999). 
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Because of their effects at individual and population levels, inbreeding and reduced 

genetic diversity directly influence extinction risk in wild populations. In an extreme 

example, inbreeding explains 26% of the variation in extinction rate among 

metapopulations of Glanville fritillary butterflies (Melitaea cinxia, Saccheri et al. 1998). 

However, it has been suggested that species with a history of small population size and 

frequent inbreeding (e.g. island endemics) may be less susceptible to the effects of 

inbreeding because they have been purged of deleterious alleles (Craig 1991). Ancestral 

inbreeding may expose deleterious alleles to selection, resulting in a decrease in their 

frequency (Hedrick 1994). Although this view has influenced the management of some 

species (see Jamieson et al. 2006), purging is unlikely to reduce the negative effects 

inbreeding depression (Ballou 1997; Frankham 2001, but see Crnokrak & Barrett 2002). 

There is little evidence for purging in natural populations, and inbreeding depression has 

been detected in many island endemics (Jamieson et al. 2006). 

 

Despite the clear links between a loss of genetic diversity, reduced evolutionary potential, 

and increased extinction risk, it is not entirely clear how much genetic diversity a 

population can lose before it has a higher risk of extinction or reduced evolutionary 

potential. In other words, how much genetic diversity must be maintained in order to 

minimise these effects? As any loss of genetic diversity, particularly due to anthropogenic 

effects, is considered detrimental, it is generally agreed that the more heterozygosity 

retained, the better (Franklin & Frankham 1998; Lynch & Lande 1998). More tangibly, cited 

targets for the maintenance of genetic diversity in small populations are usually 90-95% 

heterozygosity over 100-200 years (Ralls & Ballou 1986; Soulé et al. 1986; Allendorf & 

Ryman 2002), with the assumption that small losses of genetic diversity should reflect 

minimal inbreeding and the retention of adaptive potential. 

 

1.3 Translocations 

 

Translocation is defined as the movement of living organisms from one area with free 

release in another (IUCN 1987). Three classes of translocation distinguish between 

different motivations and population statuses. First, introductions are movements, either 

intentional or accidental, of organisms outside of their historic range. Second, 

reintroduction is the intentional movement of an organism into a part of its native range 

from which it has disappeared or become extirpated in historic times. Third, a 
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supplementation is the movement of individuals into a population of conspecifics with 

the intention of increasing population size. 

 

Reintroductions are increasingly used as a means of species and ecosystem restoration 

(Lipsey & Child 2007; Seddon et al. 2007), yet success rates are generally around 50% for 

threatened and endangered species (Griffith et al. 1989; Wolf et al. 1996). Reptile and 

amphibian species worldwide have undergone dramatic declines (Gibbons et al. 2000; 

Stuart et al. 2004), and translocations of herpetofauna have had lower success rates than 

translocations of birds and mammals (19% v. 53%, respectively, Dodd & Seigel 1991; Wolf 

et al. 1996, but see Germano & Bishop 2009). Reasons for lower success rates may include 

the unique biophysical constraints imposed by ectothermy, differing biological 

requirements during different life stages, and disease (Dodd & Seigel 1991). 

 

New Zealand has the most diverse herpetofauna of any temperate archipelago 

(Daugherty et al. 1990). Whilst the entire fauna is protected by strict legislation, more 

than half of the reptile and amphibian species require urgent conservation action 

(Daugherty et al. 1994; Hitchmough et al. 2007). The arrival of humans in New Zealand led 

to marked changes in the distribution and abundance of many species (Towns & 

Daugherty 1994), leaving about 40% of all reptile and amphibian species confined mainly 

or entirely to offshore islands (Daugherty et al. 1994). The introduction of mammalian 

predators, especially rats (Rattus spp.), has been the primary cause of decline, though 

habitat alteration and occasional harvest by humans may have contributed to declines of 

some species (Towns & Daugherty 1994). 

 

Translocation is one of the most commonly used tools in New Zealand conservation, and 

over 400 translocations of 40 taxa (primarily birds) were carried out by 1995 (Armstrong & 

McLean 1995). The number of translocations has increased dramatically in recent years 

(Saunders 1995), partially due to the removal of all introduced mammalian predators 

from about 70 offshore islands, resulting in more than 30,000 ha of pest free habitat 

(Parkes & Murphy 2003). Translocation is increasingly used for management of 

herpetofauna, and over 60 translocations of 30 species have been carried out since 1984 

(TP Bell, JM Germano, and KA Miller, unpubl. data). 
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1.4 Genetic diversity in translocated populations 

 

Despite the known demographic risks and genetic consequences of small population 

size, reintroduced populations of threatened species are often founded by a small 

number of individuals (Griffith et al. 1989; Wolf et al. 1996). Founder groups may be small 

to limit potential impacts on fragile source populations or ecosystems (e.g. Towns & 

Ferreira 2001), but the loss of genetic diversity combined with inbreeding depression in a 

small reintroduced population could reduce the probability of establishment and 

persistence (Armstrong & Seddon 2008). Therefore, maximising genetic diversity in 

reintroduced populations is important for both short- and long-term success 

(Fitzsimmons et al. 1997; Allendorf & Luikart 2007; Armstrong & Seddon 2008). In New 

Zealand, founder groups are often very small (less than 30 individuals, Lovegrove 1996; 

Towns & Ferreira 2001; Jamieson et al. 2003), and the neglect of the potentially serious 

consequences of inbreeding depression in some recovery programs has generated 

criticism (Jamieson et al. 2006). 

 

The maintenance of genetic diversity in a translocated population will be affected 

differentially by several factors. First, small founder groups may cause a genetic 

bottleneck, and small effective population sizes promote the loss of genetic diversity. 

Second, intentionally choosing diverse founders or mixing founders from several sources 

may promote higher genetic diversity. Third, increasing population size generally 

promotes the maintenance of genetic diversity. Lastly, many mating systems reduce 

effective population size and may cause a loss of genetic diversity, but largely 

overlapping generations may minimise this effect. Reintroduced populations often retain 

only a small proportion of the genetic variation of their sources at both neutral and 

functional loci (Williams et al. 2000; Williams et al. 2002; Miller & Lambert 2004). This 

reduction in diversity is intensified by small founding populations, and the genetic 

signatures of reintroduction events may be accentuated by population isolation (Latch 

and Rhodes 2005). 

 

The empirical evidence that reintroductions cause genetic bottlenecks is equivocal. 

Reintroductions of threatened species are typically sourced from small populations or 

those that have themselves been through a bottleneck, and the signatures of a 

bottleneck in a source population may make it hard to distinguish the direct effects of 

translocation. Reduced heterozygosity and allelic diversity in reintroduced populations 
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are well documented (Fitzsimmons et al. 1997; Williams et al. 2000; Swanson et al. 2006), 

yet other signatures of genetic bottlenecks are not commonly described. Although 

translocated populations of Alpine ibex (Capra ibex) showed multiple signatures of 

genetic bottlenecks, the source population showed the same signals, and a population 

bottleneck in the source prior to translocation had a greater effect on the patterns of 

genetic diversity (Maudet et al. 2002). When multiple source populations were used for 

the reintroduction of American martens (Martes americana), no evidence of a genetic 

bottleneck was detectable (Swanson et al. 2006). Further, genetic bottlenecks were only 

associated with a translocated population of elk (Cervus elaphus) that remained smaller 

than 50 individuals for 50 years (due to legal harvest), and not with a larger translocation 

that expanded rapidly (Williams et al. 2002). 

 

Apart from theoretical concerns over maintenance of diversity during translocations and 

empirical evidence showing reduced genetic diversity after translocations, there is little 

evidence of decreased fitness in reintroduced populations. The correlation between a loss 

of genetic diversity during reintroduction and increased extinction risk is even less clear. 

Reintroduced takahe (Porphyrio hochstetteri) show signs of environmentally-induced 

inbreeding depression (Jamieson and Ryan 2000), but high levels of inbreeding in the 

source population prior to translocation make assessment of inbreeding depression 

difficult (Jamieson et al. 2003). Reduced juvenile survival was only evident in highly 

inbred North Island robins (Petroica longipes), which became rare after the population 

expanded (Jamieson et al. 2007). Further, inbreeding depression may have only minimal 

effects on population establishment. Even when egg failure rates are tripled, extinction 

risk increases by only 33% for reintroductions of South Island robins (Petroica australis) 

founded with as few as four individuals (Taylor et al. 2005). The probability of extinction 

was negligible in a species with a higher finite rate of population growth (South Island 

saddlebacks, Philesturnus carunculatus, Taylor et al. 2005). However, the more insidious 

consequences of a loss of genetic variation and thus adaptive potential may have a 

greater effect on the long-term persistence of these populations (Frankham 1999; 

Spielman et al. 2004). 

 

1.5 Thesis structure 

 

This aim of this thesis is to advance the current understanding of the factors that 

influence inbreeding dynamics and the long-term maintenance of genetic diversity in 
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reintroduced populations. Understanding and predicting how management actions 

affect genetic diversity in translocated populations has been identified as a priority both 

for species recovery (e.g. Towns 1999) and in the broader field of reintroduction biology 

(Armstrong & Seddon 2008). The results of this thesis will therefore provide information 

to managers and researchers that improves translocation planning and the 

understanding of how management practices affect the adaptive potential of 

populations. The questions underpinning this thesis are: 

 

1) How can genetic diversity in founder groups be maximised? 

2) Can the negative consequences of inbreeding be easily detected in cryptic 

species? 

3) How do life history traits and the mating system of a species affect long-term 

patterns of genetic diversity? 

 

In order to realistically evaluate options for the genetic management of threatened 

species, it is essential to appreciate the conservation climate in which management 

decisions are based. Thus in Chapter Two, I present a case study that demonstrates the 

difficulty in using genetic data to manage threatened species. Using data from the three 

remaining natural populations of Whitaker’s skink (Cyclodina whitakeri), I explore the 

genetic relationships among populations. I then evaluate options for a reintroduction of 

Whitaker’s skink from captivity to the wild, including potential for inter-population 

hybridisation. Chapter Two has been published as:  

 
Miller KA, DG Chapple, DR Towns, PA Ritchie, and NJ Nelson (2009) Assessing 
genetic diversity for conservation management: a case study of a threatened 
reptile. Anim Conserv 12: 163-171 

 

Determining the best strategies for the long-term maintenance of genetic diversity after 

translocation first requires knowledge of how to minimise the initial genetic bottleneck. 

Chapter Three delves in depth into the changes in genetic structure of translocated 

populations in the first few generations following release. I use a well-studied 

reintroduced population of the egg-laying skink (Oligosoma suteri) to provide a detailed 

picture of how genetic drift affects populations and how the release of gravid females 

influences effective population size. I also investigate the dynamics of inbreeding in this 

population and how inbreeding influences fitness, by examining performance-based 

surrogates of fitness. Chapter Three has been submitted to Conservation Genetics as:  
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Miller KA, DR Towns, PA Ritchie, FW Allendorf, and NJ Nelson (in review) Genetic 
structure and individual fitness following translocation of a small lizard. Conserv 
Genet 

 

Chapters Four and Five build on the previous chapters by examining the factors that 

influence how well genetic diversity will be maintained over 10 generations after 

translocation. In Chapter Four, I compare how well genetic diversity was maintained in 

founder groups during the reintroduction of three species of skink, and over 14-18 years 

following release. I then model how the different life history traits of these species affect 

the maintenance of genetic diversity in these reintroduced populations. Lastly, I evaluate 

how proposed strategies for management (supplementation and serial translocation) 

may minimise or accelerate the loss of genetic diversity in these populations. This chapter 

is currently in preparation for submission to Conservation Biology: 

 
Miller KA, NJ Nelson, FW Allendorf, and DR Towns (in prep) The effects of 
supplementation and serial translocation on genetic diversity in species with 
varied life histories 

 

In the final data chapter, Chapter Five, I focus on how the mating system of a species may 

influence the maintenance of genetic diversity, how that system may change after 

translocation, and how different founder groups may affect long-term genetic trends. I 

use populations of tuatara (Sphendon) translocated from both high- and low-diversity 

wild populations to examine the losses of genetic diversity in founder groups of different 

sizes. I then model how variance in male reproductive success influences the 

maintenance of genetic diversity over 10 generations. A version of Chapter Five has been 

published as: 

 

Miller KA, NJ Nelson, HG Smith, and JA Moore (in press) How do reproductive skew 
and founder group size affect genetic diversity in reintroduced populations? Mol 
Ecol 

 

This thesis is written as a series of independent manuscripts. As such, there may be some 

repetition in the introductions to each chapter. Chapters Two through Five include an 

introduction to the specific aims and hypotheses, as well as a discussion of the important 

findings in a broader context. Finally, Chapter Six provides a discussion on the more 

general implications of the thesis for conservation management and future directions for 

research. 
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1.6 Statement of authorship 

 

Various collaborators have earned co-authorship on individual manuscripts included in 

this thesis, and I outline their specific contributions below. For all manuscripts, I 

conceived the questions, conceptualised and conducted the analyses, and wrote each 

draft. I also collected all samples in the field and conducted all of the lab work, unless 

otherwise stated. All co-authors provided comments on earlier drafts. 

 

Nicky Nelson and Dave Towns recommended appropriate model systems and helped in 

planning the projects, including permitting, field work, and travel. They both gave 

extensive insight into the issues surrounding conservation management in New Zealand 

and the implications of my results. Additionally, Nicky Nelson gave statistical advice for 

Chapter Three and had extensive discussions with me about appropriate input 

parameters for Chapter Five. Dave Towns provided skink tissue samples collected 

between 1988 and 1999, advised me on appropriate input parameters for models in 

Chapter Four, and provided unpublished data on survival of individuals after release. 

 

Fred Allendorf and Pete Ritchie provided advice during the planning of the projects, 

including appropriate study design, and advised on the best analytical approach. Fred 

Allendorf also recommended additional analyses to strengthen the manuscripts and 

discussed most relevant aspects of population modelling given empirical results.  

 

Dave Chapple provided 5 mtDNA sequences for Chapter Two, helped in using some of 

the programmes, and discussed interpretation of the results. For Chapter Five, Hayden 

Smith wrote a short computer program to calculate allelic diversity from raw genotypic 

output from VORTEX. Jen Moore collected tuatara DNA samples from Stephens Island for 

Chapter Five, conducted lab work on those animals, and provided advice on accurately 

modelling the mating system of tuatara. 

 

 



 

CHAPTER TWO 
 

Assessing genetic diversity for conservation 

management: a case study of a threatened reptile 
 

  

2.1 Abstract 

 

The consequences of inbreeding in small isolated populations are well documented, yet 

populations are often managed in isolation to avoid irreversibly mixing genetic lineages 

and to maintain the historic integrity of each population. Three remaining populations of 

Whitaker’s skink (Cyclodina whitakeri) in New Zealand, remnants of a once wider 

distribution, illustrate the conflict between this genetic goal (separate management of 

populations) with the more tangible and immediate threats of small population size and 

inbreeding. Middle and Castle Islands harbour populations of C. whitakeri and have been 

separated from each other and from the mainland for ~10,000 years. The single mainland 

population at Pukerua Bay is extremely small, declining, and deemed a high priority for 

management. We sequenced a 550 bp region of mitochondrial DNA (ND2) and 

genotyped animals from all three populations at 13 microsatellite loci. The population of 

C. whitakeri at Pukerua Bay showed marked differences from the island populations at 

both mtDNA (unique, fixed haplotype) and microsatellite loci (FST ~ 0.20), and private 

alleles were detected at a high frequency (24% of all alleles). However, we attribute this 

pattern to an historic genetic gradient coupled with rapid genetic drift. Further, animals 

in captivity show genetic signatures of both Pukerua Bay and island populations, despite 

the goal to maintain a pure Pukerua Bay stock. The mixed genetic stock in captivity 

provides an opportunity for the addition of skinks from Middle Island to evaluate the risks 

of further population hybridisation, including the disruption of potential local adaptation, 

while mitigating the risks of inbreeding. 

 

2.2 Introduction 

 

Balancing the immediate demographic threats to a population with long-term goals for 

genetic management can be a difficult and daunting task. The factors that cause 

population declines (e.g. disease or introduced predators) are often severe and pose a 

more tangible and immediate threat of extinction than the effects of inbreeding (Thorne 
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& Williams 1988; La Marca et al. 2005; Tocher & Norbury 2005). Indeed, genetic factors 

such as inbreeding depression will have relatively little impact while populations are 

rapidly declining due to high predation rates or disease (Jamieson 2007). Yet during 

population recovery, inbreeding depression may have a large impact on population 

growth rates and extinction risk (Frankham 2005; O'Grady et al. 2006). 

 

Inbreeding is inevitable in small closed populations (Allendorf & Luikart 2007); thus 

management of threatened species in isolation may impose unnecessary inbreeding 

depression. Recovery programmes in New Zealand have been criticised for neglecting the 

potential problems of inbreeding (Jamieson et al. 2006), particularly when genetic 

exchange among populations could minimise these effects (Allendorf 2001). 

Interpopulation hybridisation can result in an increase in fitness (Hedrick 1995; 

Westemeier et al. 1998; Madsen et al. 1999). Alternately, hybridisation may reduce fitness 

in first, second, or later generation hybrids (Tallmon et al. 2004). Empirical evidence for 

inbreeding depression outweighs that of outbreeding depression (Saccheri et al. 1998; 

Crnokrak & Roff 1999), but the available information shows that the effects of 

outbreeding are severe (Marr et al. 2002; Edmands 2007 for review). In the case of 

threatened species, where decisions about management are both difficult and central to 

species survival, it becomes particularly apparent that information on the genetic 

differences among populations is important for adequate management. 

 

New Zealand’s lizard fauna may be the most diverse of any temperate archipelago 

(Daugherty et al. 1990), but human colonisation led to radical changes in the abundance 

and distribution of many species. The primary cause of decline has been introduced 

mammalian predators, especially rats (Rattus spp., Towns & Daugherty 1994). At least 40% 

of New Zealand’s herpetofauna is now restricted mainly or entirely to predator-free 

offshore islands (Daugherty et al. 1994). The ground-dwelling, relatively large-bodied, 

nocturnal skinks in the genus Cyclodina (Scincidae) are particularly susceptible to the 

effects of introduced mammals. Seven of the 10 species of Cyclodina have been 

effectively eliminated from mainland New Zealand by introduced predators (Daugherty 

et al. 1994; Towns & Daugherty 1994; Chapple et al. 2008). 

 

Whitaker’s skink (Cyclodina whitakeri) is an excellent example of the complexity of 

applying genetic data to the management of fragmented populations. Though once 

distributed across the North Island (Worthy 1987), C. whitakeri now naturally occurs on 
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only two small islands and one mainland site. It is listed as “vulnerable” (D1 + D2) by the 

World Conservation Union (2007), and its national threat status was heightened in 2007 

by the New Zealand Department of Conservation (DOC) because of population declines 

in the previous three years (Hitchmough et al. 2007). 

 

The three remaining natural populations of C. whitakeri total < 20 ha of habitat (Towns 

1992b) and are separated by up to 500 km (Figure 2.1). Two island populations are found 

on predator-free Middle and Castle Islands, and a single mainland population is located at 

Pukerua Bay. The largest population (estimated at 1,300 – 12,000 individuals, Southey 

1985) on Middle Island (13 ha) is considered stable. Castle Island (3 ha) is privately owned 

and thus not managed by DOC. The skink population on Castle Island is not given a high 

level of security (Towns 1992b; 1999), but is presumed stable because mammalian 

predators are not present. Surveys have not been conducted in the last 15 years because 

of limited access to the island. The mainland population of C. whitakeri at Pukerua Bay is 

confined to < 1 ha of habitat and persists only in deep boulder banks (Towns 1992b; 

Towns & Elliott 1996). This population declined drastically during a 23-year monitoring 

period between 1984 and 2006, presumably due to continued predation by introduced 

mammals (Hoare et al. 2007). 

 

Figure 2.1 Map of Cyclodina whitakeri distribution. Closed circles indicate extant 
populations; triangles indicate locations of subfossil remains (from Worthy 1987). 
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The genetic relationships among populations of C. whitakeri are not well understood. 

Middle and Castle Islands have been separated from each other and the mainland for 

~10,000 years (Hayward 1986; Towns 1994). Lizards are generally good colonisers of 

oceanic islands (i.e. dispersing over saltwater, Thomas & Whitaker 1996; Censky et al. 

1998), but C. whitakeri has one of the highest rates of cutaneous water loss among lizards 

and is physiologically intolerant to dehydrating conditions (Cree & Daugherty 1991). 

Contemporary gene flow (by dispersal) between populations is unlikely, but the three 

populations show no differentiation at allozyme loci (Towns & Daugherty 1994). Shallow 

divergence in mtDNA suggests that gene flow across the range of C. whitakeri persisted 

until the late Pleistocene (Chapple et al. 2008), and this estimate is consistent with the 

separation of the island populations from the mainland. 

 

Pukerua Bay is a “Key Place” in the Wellington Conservancy’s Conservation Management 

Strategy (Anon 1996); management of this reserve is targeted at the protection of C. 

whitakeri. Additionally, management of this population and translocation of animals from 

the mainland to predator-free island sites are high priorities for the species (Miskelly 1999; 

Towns 1999). However, the current capture rate of C. whitakeri at Pukerua Bay (0.03 per 

100 trap nights) is insufficient to produce a propagule for translocation; only three 

animals have been captured since 2001. Construction of a predator-proof fence is the 

most effective way to protect mainland populations from introduced predators, and 

would provide the best chance of capturing C. whitakeri (Hoare et al. 2007). However, this 

measure has several challenges, including high start-up costs. If the population at 

Pukerua Bay is genetically distinct, it may influence whether this management action is 

deemed a priority. 

 

Skinks from Pukerua Bay are held in captivity with the intention of using captive-bred 

animals as founders of a new population on a predator-free island. All 12 F1 offspring in 

the programme have been produced by a single pair: a female from Pukerua Bay and a 

male (of presumed Pukerua Bay origin) that have been part of the breeding programme 

for ~10 years. The male was taken into the captive breeding programme after a private 

breeder abandoned his collection, and confirmation of its origin was not obtained. A 

second male, taken into captivity from Pukerua Bay by DOC in 2005, has sired offspring 

from F1 females. 
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Here we evaluate both mitochondrial and microsatellite diversity for the three 

populations of C. whitakeri to inform conservation management. We aim to determine 

conservation units under traditional definitions, and assess the validity of those units 

given the challenges faced in managing C. whitakeri and the limitations encountered 

when sampling is constrained by current population status. Lastly, we aim to resolve the 

origin of the captive male (of presumed Pukerua Bay origin) to make recommendations 

for the future management of the captive population. 

 

2.3 Methods 

 

2.3.1 Sample collection and DNA extraction 
 

We sampled 51 animals: 44 from Middle Island (preserved specimens and field collected), 

all available samples from Castle Island (one preserved specimen) and Pukerua Bay (three 

preserved specimens and two animals in captivity), and the captive male of presumed 

Pukerua Bay origin. Tail or toe samples (~ 3 mm) from each animal were stored in 70% 

ethanol. Total genomic DNA extraction was performed using a standard proteinase K 

phenol-chloroform protocol (Sambrook et al. 1989) followed by ethanol precipitation. 

DNA was quantified using a NanoDrop® ND-1000 Spectrophotometer at 260 nm. 

 

2.3.2 Mitochondrial DNA sequencing 
 

We sequenced a ~600 bp portion of the mitochondrial gene ND2, a region commonly 

selected for work at comparable taxonomic levels in squamate reptiles (Keogh et al. 2005; 

Hare et al. 2008) and previously used to investigate the phylogeography of the genus 

Cyclodina (Chapple et al. 2008). We attempted to sequence all 51 samples, but 10 samples 

from Middle Island failed to amplify. The primers used to amplify and sequence ND2 were 

L4437 (Macey et al. 1997) and ND2r102 (Sadlier et al. 2004). PCR and sequencing were 

conducted as outlined in Greaves et al. (2007). Sequence data were edited using 

CONTIGEXPRESS 9.1.0 (Invitrogen) and aligned using the default parameters in CLUSTAL X 

(Thompson et al. 1997). The edited alignment comprised the 550 bp sequence reported 

by Chapple et al. (2008). 

 

 

 



Chapter 2 – Genetic structure in Whitaker’s skink  15 

 

 
2.3.3 Microsatellite genotyping 
 

All individuals were genotyped at 13 microsatellite loci (Berry et al. 2003) adapted with 5’ 

M-13 tags (TGTAAAACGACGGCCAGT; Schuelke 2000). PCR was performed in 15 μL 

reactions containing: PCR buffer (Invitrogen), 2.5 mM MgCl2, 0.4 μg/mL bovine serum 

albumin, 0.2 mM each dNTP, 0.375 U Taq DNA polymerase (Invitrogen), and ~35 ng 

genomic DNA. Locus-specific forward primer concentrations were between 0.25 and 

0.53 μM; fluorescently-labelled M-13 universal primers (Schuelke 2000) were at equal 

concentrations with reverse primers. PCR was carried out on an Eppendorf Mastercycler 

thermocycler. The PCR profile consisted of one cycle of 94 °C for 3 min, 30 cycles of (94 °C 

for 30 s, 57 °C for 45 s, 72 °C for 45 s), eight cycles of (94 °C for 30 s, 53 °C for 45 s, 72 °C for 

30 s), and a final extension at 72 °C for 15 min. PCR products were pooled for genotyping 

on an ABI3730 Genetic Analyzer (Applied Biosystems, Inc.). Allele sizes were scored 

manually by KAM using GENEMAPPER 3.7 (Applied Biosystems, Inc.). 

 

2.3.4 Data analysis 
 

The captive male of presumed Pukerua Bay origin was removed from all analyses except 

for the population assignment test. The Castle Island individual was removed for all 

statistical microsatellite analyses because only one sample was available. 

 

Haplotype diversity (h) and nucleotide diversity (π) were calculated in DNASP 4.10.9 (Rozas 

et al. 2003), and uncorrected mtDNA sequence divergence was calculated in MEGA 3.1 

(Kumar et al. 2004). A haplotype network was created in TCS 1.21 (Clement et al. 2000). 

 

We calculated the frequency of null alleles in FREENA (Chapuis & Estoup 2007), and found 

that two loci (Oligr3 and Oligr13) had a high frequency of null alleles in the Middle Island 

population (0.19 and 0.08, respectively). Two loci (Oligr2 and Oligr17) had a high 

frequency of null alleles in Pukerua Bay (0.29 and 0.15, respectively). Null alleles affect 

estimates of population differentiation by reducing intra-population genetic diversity 

(Paetkau & Strobeck 1995), and FST is generally overestimated in the presence of null 

alleles (Chapuis & Estoup 2007). We therefore excluded Oligr3 and Oligr13 from analyses 

of population differentiation and assignment tests. We did not exclude Oligr2 or Oligr17 

from any analyses, because null alleles were not detected in the Middle Island sample, 
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and we could not rule out that detection of null alleles may have been related to the 

sample size of the Pukerua Bay population. 

 

Departures from Hardy-Weinberg proportions (Guo & Thompson 1992) and FST (Weir & 

Cockerham 1984) were calculated in GENEPOP 4.0 (Rousset 2008). Tests of significance 

were combined over all loci using Fisher’s combined probability test. We also conducted 

an AMOVA using GENALEX 6.1 (Peakall & Smouse 2006). Using FSTAT 2.9 (Goudet 1995), we 

calculated allelic richness (number of alleles corrected for sample size) at all 13 loci in the 

Middle Island population based on a sample of five individuals (i.e. the sample size from 

Pukerua Bay). 

 

Assignment/exclusion tests were conducted in GENECLASS2 (Piry et al. 2004) which assigns 

individuals to a population and computes the probability that the individual’s multilocus 

genotype would be encountered in each reference population. Probabilities were 

calculated using the Monte-Carlo resampling method of Paetkau et al. (2004) to reflect 

the sampling variance associated with the dataset. An assignment test was run on all 

individuals from our reference populations (Middle Island and Pukerua Bay) to assess the 

power of our dataset. A second test was run to assign the captive male of presumed 

Pukerua Bay origin to one of the two reference populations. 

 

2.4 Results 

 

2.4.1 MtDNA variation 
 

We obtained 41 mtDNA sequences and observed 11 ND2 haplotypes in total (GenBank 

Accession numbers: EU852568- EU852578). All Pukerua Bay animals shared a single 

haplotype that was not found in either Middle Island or Castle Island samples. The Castle 

Island animal shared a haplotype with Middle Island. Overall haplotype diversity was high 

(0.89 ± 0.003, Table 2.1), as was diversity within Middle Island (0.88 ± 0.005). The 

relationships among haplotypes are shown in Figure 2.2. The captive male of presumed 

Pukerua Bay origin shared a haplotype with both Middle and Castle Islands. 

 

Geographic structuring among populations was minor (mean sequence divergence 

across all samples = 0.87% ± 0.23). Sequence divergence between Pukerua Bay and the 

island populations (Middle Island: 1.14% ± 0.36, Castle Island: 0.36% ± 0.25) were not 
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greater than between the island populations (Middle to Castle Island = 1.05% ± 0.33) or 

the mean sequence divergence within Middle Island (0.80% ± 0.20). 

 

Table 2.1 Variation in mtDNA across the three populations of Cyclodina whitakeri. Overall 
haplotype diversity was high, but was mostly influenced by intra-population diversity in 
Middle Island. 
 

 Sample Size 
Number of 
Haplotypes 

Haplotype 

diversity (h) 

Nucleotide 
diversity (π) 

Middle Island 34 10 0.88 ± 0.005 0.79% 
Pukerua Bay 5 1 0.0 0.0 
Castle Island 1 1 -- -- 

Total 40 11 0.89 ± 0.003 0.87% 

 

2.4.2 Microsatellite variation within populations 
 

Twelve of 13 microsatellite loci surveyed were polymorphic (2-18 alleles each, Table 2.2). 

After removal of Oligr3 and Oligr13 (loci with high frequencies of null alleles), both Middle 

Island and Pukerua Bay populations were in Hardy-Weinberg equilibrium (p = 0.17 and 

p = 0.08, respectively). Only one locus (Oligr2) in Pukerua Bay deviated significantly from 

Hardy-Weinberg proportions (p = 0.02 after sequential Bonferroni correction). 

 

Genetic differentiation between Middle Island and Pukerua Bay was high (FST = 0.19) 

across 11 loci. The estimate of differentiation between populations was higher using an 

AMOVA framework, which considers relationships between alleles (ΦPT = 0.27, p < 0.001). 

The population at Pukerua Bay had fewer alleles per locus than the population on Middle 

Island, even after correction for discrepancies in sample sizes (Table 2.2). 

 

Private alleles were only labelled in Pukerua Bay and Castle Island populations (Table 2.2), 

as sample sizes were unequal between populations, and the detection of alleles is highly 

dependent on sample size. Five loci had a total of eight private alleles in Pukerua Bay, 

representing 24.2% of the total alleles found in Pukerua Bay samples across all 13 loci 

(Table 2.2). All Pukerua Bay animals had between one and four private alleles. The single 

sample from Castle Island had private alleles at 4 loci, representing 19% of the total alleles 

found across 13 loci (Table 2.2). 
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All Middle Island and Pukerua Bay animals were correctly assigned to their population of 

origin (p < 0.04). The captive male of presumed Pukerua Bay origin was assigned to 

Middle Island, and Pukerua Bay was excluded as a possible origin (p < 0.001). 

 

 

Figure 2.2 Network showing the relationship among haplotypes of Cyclodina whitakeri. 
Each circle represents one haplotype, and sizes indicate the number of samples (inset) 
with each haplotype. Each line represents one base pair change between sequences. 
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2.5 Discussion 

 

Patterns of genetic diversity at both mtDNA and microsatellites indicate that the island 

and Pukerua Bay populations of C. whitakeri are strongly differentiated. When threatened 

species are reduced to very few natural populations, we must consider the risks of 

managing discrete populations separately against the alternative of managing them 

together, particularly when one population is disproportionately vulnerable to extinction. 

Only the Middle Island population of C. whitakeri is stable (Towns 1999), and the Pukerua 

Bay population is highly vulnerable. 

 

Populations are often labelled as Evolutionary Significant Units (ESUs) when they are 

reciprocally monophyletic at mtDNA and show significant divergences at nuclear loci 

(Moritz 1994). This definition is used most frequently as it is simple to implement (de Guia 

& Saitoh 2007), but small bottlenecked populations are more likely to be identified as 

ESUs when only neutral markers are considered (Allendorf & Luikart 2007). The island and 

Pukerua Bay populations qualify as separate ESUs under this definition, but recent 

population declines limit its applicability. More robust ESU definitions use data on non-

molecular traits, including adaptive differences and ecological exchangeability (Waples 

1991; Crandall et al. 2000). Other authors suggest that both the specific management 

objectives for and the anthropogenic risks faced by the species must be considered 

(Taylor & Dizon 1999), and that no single definition will work in all cases (Fraser & 

Bernatchez 2001). 

 

When populations are extremely small and/or rare, it is difficult to obtain the required 

ecological information to evaluate more robust definitions of ESUs. However, local 

adaptation, particularly with respect to temperature in ectotherms, is possible when 

populations survive in atypical habitats. Cyclodina whitakeri typically live in seabird 

burrows (Southey 1985), but occupy deep boulder banks at Pukerua Bay. Seabird burrows 

maintain stable temperatures (18-19 °C) and high humidity (> 90%, Towns 1992a), but are 

not found at Pukerua Bay, as seabirds are also vulnerable to mammalian predators. 

Although the use of boulder bank habitat most likely reflects a response to mammalian 

predators (Towns & Elliott 1996; Hoare et al. 2007), animals at Pukerua Bay may have 

adapted to thermal conditions. Temperature and humidity are major physiological 

constraints for C. whitakeri, and temperatures at Pukerua Bay are relatively low, as 

Pukerua Bay lies ~500 km south of the two island populations. Temperature would be a 
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major selective force for C. whitakeri, and animals in captivity have died during winter 

frosts typical in the Pukerua Bay region. It is possible that the population is locally 

adapted to conditions at Pukerua Bay, but without clear evidence of adaptive divergence, 

the island populations and Pukerua Bay should be treated as a single unit of conservation 

(Crandall et al. 2000). 

 

Whilst the population of C. whitakeri at Pukerua Bay shows differences from the island 

populations at both mitochondrial DNA and microsatellite loci, this pattern is most likely 

a product of an historic genetic gradient coupled with strong genetic drift. Populations of 

C. whitakeri have declined since the introduction of mammalian predators. The three 

remnant populations are at opposite ends of the species historic range (Worthy 1987); 

historic population structure due to isolation by distance could partially explain the 

relatively large proportion of private alleles (24.2% of all alleles found in Pukerua Bay, 

Table 2.2) and a unique mtDNA haplotype. With a population size almost certainly smaller 

than 100 individuals (extrapolated from Towns & Elliott 1996 and Hoare et al. 2007), the 

population at Pukerua Bay is clearly in a demographic bottleneck. Genetic diversity is 

reduced at both mtDNA and microsatellites in the Pukerua Bay population, indicating 

that the genetic differences between Middle Island and Pukerua Bay skinks (FST = 0.19-

0.27) could be due to rapid genetic drift. Differentiation is large and significant, but 

measures of FST do not necessarily reflect variation in quantitative traits (Reed & Frankham 

2001, but see Merilä & Crnokrak 2001). However, the effects of genetic drift may 

supersede adaptation in cases of severe bottlenecks (Miller et al. 2008). 

 

The recent decline of C. whitakeri on the mainland has most likely produced the observed 

pattern of mitochondrial diversity. Patterns of mitochondrial diversity in two widespread 

Cyclodina species (C. aenea and C. ornata, Chapple et al. 2008), whose distribution reflect 

the historic distribution of C. whitakeri (Worthy 1987) support this assertion. These species 

inhabit similar habitat (lowland forest) and may provide insight into historic relationships 

among C. whitakeri populations. Populations of C. aenea from the lower North Island 

(including Pukerua Bay) and the Mercury Island group (the group containing Middle 

Island) belong to a single clade with sequence divergence equal to that seen across 

populations of C. whitakeri, yet populations of C. aenea within the Mercury Island group 

belong to two different clades (Chapple et al. 2008). Populations of C. ornata from the 

lower North Island also group with a northern population (Chapple et al. 2008). Further, 

the greatest source of mtDNA diversity was found north of the Mercury Islands in both C. 
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aenea and C. ornata, indicating that perhaps the most divergent populations of C. 

whitakeri were once also found in that range. 

 

Both mtDNA and microsatellite data confirm that the captive male of presumed Pukerua 

Bay origin likely belongs to one of the island populations. We cannot conclude from 

which of these populations he originated, as this male shared an mtDNA haplotype with 

both Middle and Castle Islands. Due to small sample size from Castle Island, it is currently 

not possible to use nuclear DNA to distinguish between Middle and Castle Islands as the 

origin of the captive male. However, the high frequency of private alleles in the single 

sample from Castle Island (19% of all alleles) indicates that further sampling is required to 

determine the extent of genetic differentiation of this population. 

 

Evaluating the risks of intentional population hybridisation is a complex task (Edmands 

2007), and genetic risks must be considered along with many others. The unique set of 

factors influencing management of a species will have an impact on whether intraspecific 

hybridisation is a viable option for management (Westemeier et al. 1998; Ebert et al. 2002; 

Gleeson et al. 2007). Inbreeding depression can be difficult to demonstrate in cryptic 

species. However, realistic levels of inbreeding depression influence extinction risks in 

natural populations, and inappropriate recovery strategies may be implemented if 

genetic factors are ignored (Frankham 2005; O'Grady et al. 2006). Isolated relict 

populations cannot be conserved indefinitely with small size and hybridisation may be a 

viable option for recovery (Westemeier et al. 1998). After introduction of genetic diversity 

from three populations to a small isolated population in Illinois, greater prairie chicken 

(Tympanuchus cupido pinnatus) egg fertility increased by up to 25% (Westemeier et al. 

1998). Florida panthers (Puma concolor coryi) were hybridised with the subspecies from 

Texas (P. c. stanleyana) in 1995 with multiple benefits. Survival of hybrid kittens was three 

times higher than that of purebred kittens (Pimm et al. 2006) and no hybrid animals 

suffered from cryptorchidism, a condition common in purebred Florida panthers that 

may reduce fertility (Mansfield & Land 2002). Similarly, the release of adders (Vipera berus) 

from two non-isolated populations into a population suffering from inbreeding 

depression led to a rapid decrease in the proportion of stillborn young (Madsen et al. 

1996) and an increase in recruitment (Madsen et al. 1999).  

 

When species are extremely rare, decisions about genetic management are often limited 

by small sample sizes. An adaptive management approach may be valuable in these 
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situations. For C. whitakeri, genetic data indicate that management efforts should focus 

on implementing strategies to increase the size of the Pukerua Bay colony in captivity and 

on sampling individuals from Castle Island. Further, this approach should be used to 

evaluate the effects of hybridisation in the captive colony. An adaptive management 

approach would require commitment to continued genetic monitoring, but would 

reduce uncertainty over time by accruing the data needed to improve future 

management. 

 

2.5.1 Management implications 
 

Current management is aimed at maintaining a pure Pukerua Bay population in captivity 

for translocation (Miskelly 1999). However, the sire of all 12 F1 offspring in the 

programme originated from an island population (this study). In light of our genetic data, 

there are four options for continued management of this population: 1) continuation of 

the programme “as is”, accepting that population hybridisation has occurred; 2) restarting 

the captive programme using only Pukerua Bay animals; 3) maintaining both pure and 

hybrid populations, while adding more animals from Middle Island (adaptive approach); 

or 4) terminating the captive breeding programme and transferring captive animals to a 

predator-free island. All of these options pose substantial risks of inbreeding depression if 

new animals are not introduced from the wild. However, an adaptive management 

approach (Option 3) provides an opportunity to assess the risk of population 

hybridisation by pairing animals of Pukerua Bay origin and comparing survival and 

fecundity of those offspring to that of hybrid offspring (about 30% juvenile mortality, D 

Keall, pers. comm.) over several generations. If hybrid animals survive and reproduce as 

well as or better than pure offspring, animals from Middle Island could be intentionally 

introduced to the captive population to increase the founding population size. Hybrid 

animals could comprise a founder group for the proposed translocation to a predator-

free site. Whilst animals from Middle island could be released onto a predator-free island 

with captive animals (Option 4), there would be little opportunity to evaluate survival and 

fecundity. However, the non-genetic risks, including the potential disruption of social 

interactions and introduction of parasites or disease, and the potential value of 

preserving the historical integrity of a population (Schwartz 1994; Edmands 2007) need to 

be assessed by managers independently of genetic risks. As animals are extremely rare at 

Pukerua Bay, addition of skinks to the captive breeding programme from an island 

population would be beneficial from both genetic and demographic perspectives.



 

CHAPTER THREE 
 

Genetic structure and individual fitness following 

translocation of a small lizard 
 

  

3.1 Abstract 

 

Translocations of threatened species are often founded by a small number of individuals, 

but maximising genetic diversity is often a criterion for founder selection. Translocation of 

pregnant females has been proposed as a means of maximising productivity and genetic 

diversity, but it is unclear whether the release of pregnant females increases the effective 

number of founders. Ten male and 20 gravid female egg-laying skinks (Oligosoma suteri) 

were translocated from Green Island to Korapuki Island, New Zealand in 1992. We 

sampled the populations on both Green and Korapuki Islands to examine the effect of 

translocation on the genetic structure and fitness of egg-laying skinks in the 14 years 

following release. The population on Korapuki Island showed multiple genetic signatures 

of a bottleneck that were not detected in the population on Green Island. At the 

individual level, juveniles on Korapuki Island were more homozygous than adults on 

Korapuki and Green Islands. However, we did not find evidence of inbreeding depression 

using two performance-based surrogates of fitness. Further, the population on Korapuki 

Island had a significantly larger effective population size than would have been expected 

by translocation of 30 skinks, based on 10,000 simulated populations. The translocation of 

gravid females aided in increasing the effective number of founders, and may be a viable 

option for maximizing genetic diversity in translocated populations, particularly for long-

lived species. However, the continued loss of genetic variation in translocated 

populations may have more insidious long-term consequences, such as the loss of 

adaptive potential, which cannot be assessed in the short-term. 

 

3.2 Introduction 

 

Translocation is a common tool for species conservation and ecosystem restoration. The 

goal of translocation projects is to establish a viable population in an area from which the 

species has become extirpated (IUCN 1987). Translocations of threatened species 

generally have low success rates (Griffith et al. 1989; Dodd & Seigel 1991; Germano & 
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Bishop 2009), but little is known about the causes of failure or the reasons for success 

(Armstrong & McLean 1995). Although it is generally accepted that maximising genetic 

diversity in translocated populations is important (Fitzsimmons et al. 1997; Armstrong & 

Seddon 2008), founder group sizes are often small, particularly for threatened and 

endangered species (Griffith et al. 1989). 

 

A sudden reduction in population size (a bottleneck) can reduce genetic diversity and 

hence reduce evolutionary potential and increase the risk of extinction (Frankham 1999; 

2005). Populations show several measurable genetic patterns after bottlenecks, including 

the loss of rare alleles and reduced allelic diversity (Allendorf 1986), a mode shift in allele 

frequency distribution (Luikart et al. 1998), non-random association of alleles at different 

loci (gametic disequilibrium, Hill 1981; Allendorf & Luikart 2007), and an excess of 

heterozygosity relative to that expected in a non-bottlenecked population with the same 

number of alleles (Cornuet & Luikart 1996; Luikart & Cornuet 1998). 

 

Inbreeding following genetic bottlenecks can cause additional losses of genetic diversity 

and an increase in the frequency of deleterious alleles. Inbreeding can have negative 

effects on the health and fitness of individuals and the stability of populations (Keller & 

Waller 2002; O'Grady et al. 2006). The loss of genetic diversity is frequently correlated with 

a loss of individual fitness in wild populations (Crnokrak & Roff 1999; Coltman & Slate 

2003). Inbred individuals often have a reduced probability of survival (Keller 1998; 

Coulson et al. 1999), lower reproductive output (Slate et al. 2000; Amos et al. 2001), or 

increased susceptibility to disease (Coltman et al. 1999; Cassinello et al. 2001). The 

influence of genetic bottlenecks on individual fitness also has consequences at 

population level (Newman & Pilson 1997). For example, low hatching rates in birds are 

associated with small founder groups (Briskie & Mackintosh 2004), and mean litter size 

relative to maternal body size was lower in an isolated population of adders (Vipera berus) 

than non-isolated populations (Madsen et al. 1996). Because of their effects at individual 

and population levels, inbreeding and reduced genetic diversity directly influence 

extinction risk in wild populations (Saccheri et al. 1998). It has been suggested that 

species with a history of small population size and frequent inbreeding (e.g. island 

endemics) may be less susceptible to the effects of inbreeding because they have been 

purged of deleterious alleles (Craig 1991). However, purging is unlikely to reduce 

inbreeding depression (Ballou 1997; Frankham 2001), and inbreeding depression has 

been detected in many island endemics (Jamieson et al. 2006). The loss of genetic 
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diversity combined with inbreeding depression in a small reintroduced population could 

negatively affect the probability of population establishment. 

 

Despite the known genetic consequences of small population size, translocations of 

threatened species are often founded by a small number of individuals to limit the impact 

on the source population (Griffith et al. 1989; Towns & Ferreira 2001). Minimising the loss 

of genetic diversity is often considered important in translocation planning. Translocation 

of pregnant females has been used as a means of maximising productivity and genetic 

diversity (Towns & Ferreira 2001; Nelson et al. 2002a), but it is unclear whether the release 

of pregnant females increases the effective number of founders. Stress during 

translocation may induce abortions and/or changes in sex ratio bias (e.g. rhinoceroses, 

Linklater 2007), or females may not be able to find suitable nest sites after release. 

 

It is assumed that translocations cause genetic bottlenecks, but empirical evidence is still 

equivocal. Reduced heterozygosity and allelic diversity relative to the source population 

are well documented in translocated populations (Fitzsimmons et al. 1997; Williams et al. 

2000; Swanson et al. 2006), but other bottleneck signatures such as an excess of 

heterozygosity relative to a population at equilibrium are less commonly described (but 

see Maudet et al. 2002). This bottleneck signature was associated with a translocated 

population of elk (Cervus elaphus) that remained smaller than 50 individuals for 50 years 

(due to legal harvest), but was not detected in a larger translocation that expanded 

rapidly (Williams et al. 2002), and no evidence of a genetic bottleneck was detectable 

when multiple source populations were used in a translocation of American martens 

(Martes americana, Swanson et al. 2006). 

 

3.2.1 Translocation of the egg-laying skink 
 

The introduction of mammalian predators during the human colonisation of New 

Zealand led to radical changes in abundance and distribution of native fauna (Towns & 

Daugherty 1994). For example, at least 40% of the reptile and amphibian species are 

restricted mainly or entirely to offshore islands free of introduced mammals (Daugherty et 

al. 1994). Translocation of threatened species between islands has therefore become a 

primary conservation strategy in New Zealand (Armstrong & McLean 1995; Saunders 

1995).  
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Egg-laying skinks (Oligosoma suteri) are shore-dwelling, oviparous reptiles (up to 108 mm 

snout-vent length (SVL), Hardy 1977) that live ~20 years. These semi-aquatic lizards are 

restricted to boulder beaches and rocky shore platforms (Towns 1975a). Due to the 

effects of introduced predators, they have a fragmented distribution on islands and a few 

isolated mainland sites around northern New Zealand (Towns et al. 2003). In 1992, 30 

adult egg-laying skinks were translocated from Green Island (3 ha) to Korapuki Island (18 

ha). Both islands are found in the Mercury Island group (36°40’S, 175°52’E), within 1.5 km 

of each other. Green Island has remained unmodified and predator-free, whereas 

Korapuki Island has a history of extensive modification by humans (Hicks et al. 1975) and 

introduced mammals (Towns 1991). Restoration of island ecosystems in New Zealand 

commonly involves eradication of all introduced mammals and the translocation of 

native species (Towns & Ferreira 2001; Towns & Broome 2003). Korapuki Island has been 

one such target of restoration efforts, including the eradication of rabbits (Oryctolagus 

cuniculus) and Pacific rats (Rattus exulans) and translocations of several species of 

invertebrates and reptiles, since 1986 (Towns 2002; Towns & Atkinson 2004).  

 

The translocation of egg-laying skinks to Korapuki Island was designed to minimise 

damage to the population on Green Island, but maximize productivity on Korapuki Island. 

Therefore, a small founder group of 10 males and 20 gravid females was released (Towns 

& Ferreira 2001). Thus, the number of genetic founders could be 50 (if each female had 

mated with a different male) or more (if multiple paternity is common in O. suteri). The 

population on Korapuki Island was monitored at least twice annually until 2000 and at 

least biannually thereafter to obtain data on survival, recruitment, and population 

growth. Survivorship of founders in the first year was 68% for females and 72% for males, 

and population growth was detected within three years of release (Towns & Ferreira 

2001). 

 

In this study, we examine the genetic structure and fitness of egg-laying skinks on 

Korapuki Island to determine whether the release of gravid females reduces the effects of 

genetic drift after translocation. We first test for several signatures of genetic bottlenecks, 

and ask how well genetic diversity was maintained during a period of population 

establishment by comparing genetic diversity in different cohorts. We then examine 

whether the release of gravid females had an influence on the effective number of 

founders by simulating genetic diversity in 10,000 translocated populations. Lastly, we 

examine whether the translocation of egg-laying skinks is associated with individual 
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fitness consequences due to inbreeding using two performance-based surrogates of 

fitness. 

 

3.3 Methods 

 

3.3.1 Animal collection and microsatellite genotyping 
 

We caught 185 egg-laying skinks on Korapuki Island and 53 on Green Island using pitfall 

traps baited with cat food. Trapping on Korapuki Island was from 14 November to 5 

December 2006 (late Austral spring) and on Green Island from 1-4 March 2007 (Austral 

summer). Tail tissue (~3 mm) from each trapped animal was removed using a sterile 

scalpel blade. Additionally, toe samples from 15 skinks on Korapuki Island were collected 

between 1996 and 1999. All tissue samples were stored in 70% ethanol. Total genomic 

DNA extraction was performed using a standard proteinase K phenol-chloroform 

protocol (Sambrook et al. 1989) followed by ethanol precipitation. DNA was quantified 

using a NanoDrop® ND-1000 Spectrophotometer at 260 nm. 

 

All individuals were genotyped at 10 microsatellite loci (Oligr1, Oligr2, Oligr3, Oligr4, 

Oligr8, Oligr10, Oligr13, Oligr14, Oligr19, and Oligr20, Berry et al. 2003) adapted with 5’ 

M-13 tags (Schuelke 2000). PCR was set up and carried out as outlined in Miller et al. 

(2009b, Chapter 2). PCR products were run on an ABI3730 Genetic Analyzer (Applied 

Biosystems, Inc.), and allele sizes were scored manually using GENEMAPPER 3.7 (Applied 

Biosystems, Inc.). 

 

3.3.2 Fitness measures 
 

Two measures of performance were used as surrogates of fitness of skinks on Korapuki 

Island: maximum sprint speed and dive duration. Sprint speed is linked to biological 

fitness of lizards because of key roles in foraging (Greenwald 1974), social interactions 

(Garland et al. 1990b), and predator escape (Christian & Tracy 1981). Diving is a means of 

predator escape in many species of semi-aquatic lizards, including egg-laying skinks 

(Whitaker 1968; Miller 2007, Appendix 2), and may be a good measure of performance 

(Hare & Miller in review). Standard morphometric measurements (mass, SVL, vent-tail 

length (VTL), tail regeneration length, and hind-limb length (HLL)) were taken. Sex of 

adults was determined by eversion of the hemipenes in males; juvenile sex could not be 
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determined. Gravidity status and an estimate of clutch size of females were determined 

by abdominal palpation. 

 

For full details on animal husbandry and performance tests, see Miller et al. (in review-a, 

Appendix 1). Briefly, three sprint tests were conducted on a plastic racetrack (80 mm x 

1.5 m, modified from Huey et al. 1981). The maximum sprint speed over 0.25 m was used, 

as this is an ecologically relevant measure for egg-laying skinks, which inhabit rocky 

beaches where long sprints are not necessary to reach cover (Towns 1975a). 

 

Three voluntary dive trials were conducted per animal in an artificial rock pool (see Hare & 

Miller in review). All dive trials were conducted on the same day as, but after completion 

of, sprint trials. Some skinks did not dive, and instead swam about on the surface of the 

water. If an animal did not dive after 10 s, we removed it from the experiment. We 

recorded the time to voluntary emergence (hereafter “dive duration”) using a manual 

stopwatch (accurate to 1 s). 

 

3.3.3 Data analysis 
 

Prior to analyses, we calculated the frequency of null alleles in FREENA (Chapuis & Estoup 

2007), and found that one locus (Oligr3) had a high frequency of null alleles in the 

Korapuki and Green Island populations (0.25 and 0.28, respectively). Oligr3 was excluded 

from further analyses, because null alleles reduce evidence of intra-population genetic 

diversity (Paetkau & Strobeck 1995). 

 

Our aim was to make comparisons between both the source and translocated 

populations and within the translocated population over time. We therefore divided all 

samples into three independent groups for all analyses (except AMOVAs, see below): 

“Green Island” (n = 85), “Korapuki adults” (n = 126), and “Korapuki juveniles” (n = 42, 

Figure 3.1). The Green Island group was comprised of animals caught on Green Island 

(n = 53), founders of the Korapuki Island translocation recaptured in 2006 (n = 5), and 

effective founders of the Korapuki Island translocation (i.e. offspring of the 20 gravid 

female founders in the year of release, and thus matings on Green Island, n = 27). 

Korapuki adults included only mature skinks (≥ 75 mm SVL) caught on Korapuki Island 

that were offspring of matings on Korapuki (n = 126). These animals represent the F1-F4 

generations after translocation, based on a minimum age at maturity of three years 
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(Towns 1975b). Korapuki juveniles included only immature skinks (< 75 mm SVL) on 

Korapuki Island that represent the most recent cohort in the translocated population, and 

include individuals from the F1-F5 generations (n = 42, Figure 3.1).  

 

 

Figure 3.1 Sampling scheme showing locations where and numbers of (in brackets) egg-
laying skinks sampled, how groups were designated for bottleneck analyses, and the 
degree of generation overlap represented by skinks born on Korapuki Island. Ten male 
and 20 gravid female egg-laying skinks were translocated from Green Island to Korapuki 
Island in 1992. The ‘effective founders’ are offspring produced by the 20 gravid females in 
the year of translocation (i.e. offspring resulting from mating on Green Island). 
 

Genetic bottleneck effects 

Departures from Hardy-Weinberg proportions (Guo & Thompson 1992) were calculated in 

GENEPOP 4.0 (Rousset 2008). Tests of significance were combined over all loci using 

Fisher’s combined probability test. Significance was assumed at p < 0.05. To test for 

differences in allele frequencies, we conducted pairwise analyses of molecular variance 

(AMOVA, Excoffier et al. 1992) in GENALEX 6.1 (Peakall & Smouse 2006). When conducting 

AMOVAs, we removed founders and effective founders of Korapuki Island, as they are 

direct ancestors of the Korapuki adult and juvenile groups and would bias estimates of 

differentiation. Thus, it was a direct comparison of animals trapped on Green Island with 

the current population on Korapuki Island. 

 

We tested for the presence of bottleneck effects in each group (Green Island, Korapuki 

adults, and Korapuki juveniles) using several measures. Using FSTAT 2.9 (Goudet 1995), we 

first calculated allelic richness (number of alleles corrected for sample size) of each 
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population. Allele frequency mode shifts (Luikart et al. 1998) were assessed graphically. 

We tested for gametic disequilibrium within each population using a Fisher’s exact test 

for all pairwise locus comparisons in GENEPOP 4.0 (Rousset 2008). Lastly, BOTTLENECK 1.2.02 

(Cornuet & Luikart 1996; Piry et al. 1999) was used to test for an excess of heterozygosity 

relative to a population at mutation-drift equilibrium. We used a statistically conservative 

two-phase model of mutation (Di Rienzo et al. 1994), which assumed 90% of mutations 

are single-step and 10% are multi-step (with a variance of 10%). Significance of 

heterozygosity excess over all loci was assessed with a Wilcoxon sign-rank test (Luikart & 

Cornuet 1998). The statistic M (the ratio of the number of alleles to the range in allele size, 

Garza & Williamson 2001) could not be calculated because several loci in at least one 

population violated the test requirement of having empty allelic states within the range 

of common alleles (frequency > 0.1). 

 

Estimates of the effective population size (Ne) of each group were generated using four 

methods. One-sample estimates were made using the linkage disequilibrium method 

(implemented in LDNe, Waples & Do 2008) and an approximate Bayesian computation 

(using ONeSAMP, Tallmon et al. 2008). Using the linkage disequilibrium method, we 

excluded all alleles with frequencies less than 0.05 (Waples 2006) and used 95% 

confidence intervals adjusted using the jackknife method. We generated Ne estimates in 

ONeSAMP using a range of prior values (expected Ne ranged from 2-500), but these 

changes did not affect the estimates. Two temporal estimates were made using Green 

Island as the first temporal sample (generation 0) and the Korapuki adult and juvenile 

groups as a second temporal sample (generation 2). The moments-based method 

described by Waples (1989) infers Ne from the standardised difference in allele 

frequencies. The likelihood-based method described by Wang (2001) uses the rate of 

coalescence of alleles between sample periods to infer Ne. 

 

Simulations of genetic diversity after translocation 

We used the programme BOTTLESIM 2.1 (Kuo & Janzen 2003) to model the expected loss of 

heterozygosity and allelic diversity following the translocation to Korapuki Island. 

BOTTLESIM allows the user to specify the starting number of alleles, their frequency, and 

changes in population size each year. We used Green Island samples as genotypic input 

data, and created annual population size estimates using population parameters outlined 

by Towns & Ferreira (2001). These annual population size estimates closely matched 

estimates made using deterministic age-specific models for the first 7 years after 
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translocation to Korapuki Island (Towns & Ferreira 2001) and the estimated population 

size on Korapuki Island after 14 years (~400 animals, KA Miller, unpubl. data). We specified 

several other parameters, including 75% generation overlap (0% = discrete generations, 

100% = complete overlap), random mating, maximum longevity of 20 years, and age of 

maturation at 3 years. We ran 10,000 iterations of a large starting population (5,000 

animals, representing Green Island) reduced to 30 individuals (translocation to Korapuki 

Island) and allowed to recover for 14 years (the year at which we sampled animals on 

Korapuki Island). Each iteration represents a separate population. We obtained raw 

genotypic data from the last year of each iteration (i.e. genotypes for all animals in 10,000 

simulated populations). To estimate Ne, we randomly sampled 126 genotypes (i.e. the 

sample size of the Korapuki adult population) in each simulated population and 

calculated Ne in LDNe. We repeated this analysis using 50 founders (20 females and 30 

males) to represent the number of genetic founders if each gravid female mated with a 

different male on Green Island. 

 

Inbreeding and heterozygosity-fitness correlations 

We calculated two heterozygosity-based metrics of individual inbreeding (hereafter 

“heterozygosity values”) using the macro provided by Bill Amos 

(http://www.zoo.cam.ac.uk/zoostaff/amos): standardised expected heterozygosity 

(Coltman et al. 1999) and homozygosity by locus (HL, Aparicio et al. 2006), which tend to 

perform well when inferring inbreeding from multilocus heterozygosity data. 

Standardised expected heterozygosity is individual heterozygosity standardised by the 

mean expected heterozygosity in the population. HL weights each locus by its allelic 

variability, while considering the identity of each allele. We used Green Island as the 

reference population in calculating allele frequencies, because including related 

individuals on Korapuki Island would bias results.  

 

We first confirmed that high heterozygosity values were due to the combined effect of all 

loci, rather than just one locus, by separately removing each locus and recalculating 

heterozygosity values at the remaining 5 loci. Heterozygosity values were not influenced 

by any one locus more than others, as values were highly correlated among all possible 

combinations of 5 loci (Pearson correlation coefficient, r > 0.78, p < 0.001 for all 

correlations). To assess changes in inbreeding, we then tested for differences in 

heterozygosity values among groups (Green Island, Korapuki adults, and Korapuki 

juveniles) using a one-way ANOVA. Post-hoc tests were conducted using Tukey’s HSD. 
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Fitness data were transformed as required to meet assumptions of normality. Body 

condition was calculated as the residuals from fitted data using a linear regression of 

log(mass) on log(SVL). Tail loss was defined as SVL/(SVL+VTL). As there were differences in 

maximum sprint speed and dive duration among groups (Miller et al. in review-a, 

Appendix 1), animals were divided into groups based on age, sex, and gravidity status for 

heterozygosity-fitness correlation analyses: males, gravid females, and juveniles. Non-

gravid adult females (n = 15) were excluded from analyses because of a small sample size. 

 

We analysed whether inbreeding influenced maximum sprint speed and dive duration 

separately for each group, while taking morphological traits into account. We ran a series 

of standard least squares and reverse stepwise multiple regressions with the log of sprint 

speed (or log of dive duration) as the dependent variable. Covariates were heterozygosity 

value, SVL, body condition, and tail loss. Clutch size was included as a factor for gravid 

females, and HLL was included as a covariate for sprint speed. 

 

3.4 Results 

 

Seven of the 10 surveyed microsatellite loci were polymorphic (7-14 alleles each, 

Table 3.1). All populations were in Hardy-Weinberg proportions at all loci (p > 0.05). 

Differentiation among all populations was low but significant (overall ФPT = 0.010, p < 

0.001). Korapuki adults and juveniles did not differ in allele frequencies, but both groups 

differed significantly in allele frequency from Green Island (Table 3.2). 

 

3.4.1 Genetic bottleneck effects 
 

A total of 62 alleles were found in the Green Island population, 58 were found in the 

Korapuki Island adult population, and 54 were found in the Korapuki Island juvenile 

population. Mean allelic richness was slightly lower in Korapuki adults (9.0) and juveniles 

(9.0) than in the Green Island population (9.9, Table 3.1). However, at one locus (Oligr10), 

an allele was detected in Korapuki adults and juveniles, but not in Green Island animals. 

At a second locus (Oligr8), an allele was found in Korapuki juveniles and the Green Island 

population, but not in Korapuki adults. Significant gametic disequilibrium (p < 0.05) was 

detected in seven of 15 pairwise locus comparisons in the Korapuki Island adult 

population after sequential Bonferroni correction. No significant gametic disequilibrium 

was detected in either the Green Island or Korapuki Island juvenile populations. 
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Table 3.2 Pairwise population ФPT estimates (below diagonal) and p-values (above 
diagonal) for each sampling group. Green Island was the source population and adults 
(F1-F4) and juveniles (F1-F5) were sampled in the translocated population (Korapuki 
Island). 
 

 Green 
Island 

Korapuki 
Adults 

Korapuki 
Juveniles 

Green Island -- 0.001 0.026 

Korapuki Adults 0.021 -- 0.430 

Korapuki Juveniles 0.014 0.000 -- 

 

There was no mode shift of allele frequency distributions in any group surveyed 

(Figure 3.2), but the mean proportion of rare alleles was lower in Korapuki juveniles (0.44), 

and Korapuki adults (0.57) than on Green Island (0.67), despite our sample size being 

largest in Korapuki adults. Similarly, Korapuki Island adult and juvenile populations had a 

significant excess of heterozygosity relative to that expected at mutation-drift 

equilibrium (p = 0.008 and 0.02, respectively). The Green Island population did not show 

an excess of heterozygosity (p = 0.58). 

 

 

Figure 3.2 Allele frequency distributions in Green Island animals (source population), 
Korapuki adults, and Korapuki juveniles. No population showed a significant mode shift, 
but rare alleles were less common in the translocated population (Korapuki adults and 
juveniles). 
 

3.4.2 Estimates of effective population size 
 

Estimates of Ne were similar using all methods (Table 3.3) except the moments-based 

method, which often generates estimates that are biased high (Luikart et al. 1999; Wang 

2001). Both temporal estimates had wider confidence intervals than the one-sample 
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estimates. Both one-sample estimates indicate a reduction in Ne consistent with 

translocation history, and the Ne in the Green Island population (293) was much larger 

than the Korapuki Island populations. However, estimates of Ne in the Korapuki adult and 

juvenile populations were higher than 30 (the size of the founder group). The estimate of 

Ne from Bayesian computation for Korapuki Island adults was similar to Green Island 

(Table 3.3), but our data violates the test assumption that the population is in mutation-

drift equilibrium. 

 

The actual HE and allelic diversity for Korapuki adults after 14 years (0.81 and 9.67, Table 

3.1) were more similar to the values predicted by 10,000 simulations of a population with 

50 genetic founders (simulated mean HE = 0.80 ± 0.03 and number of alleles = 9.42 ± 0.86) 

than values predicted by 30 founders (simulated mean HE = 0.79 ± 0.03 and number of 

alleles = 9.03 ± 0.82). In the simulated populations, the greatest loss of allelic diversity 

took place during translocation, but allelic diversity declined steadily over 14 years 

(Figure 3.3a, b). The mean Ne for simulated populations of 30 founders (31 ± 0.06) did not 

fall within the 95% CIs of the Ne estimate for Korapuki adults (37-67). The mean Ne for 

simulated populations of 50 founders (37 ± 0.06) was smaller than, but not significantly 

different to the Ne estimate for Korapuki adults. 

 

3.4.3 Inbreeding and heterozygosity-fitness correlations 
 

Heterozygosity values were highly correlated (r = -0.988, p < 0.001), and gave similar 

results in all analyses. We therefore present only results using HL (homozygosity by locus). 

Higher HL values indicate that individuals are more homozygous. Mean HE was not 

different among any group (Table 3.1), but mean individual HL differed among groups 

(p = 0.024, Figure 3.4). Juveniles had higher mean individual HL (0.24 ± 0.03, range = 

0.00-0.68) than both adults on Korapuki Island (0.17 ± 0.02, range = 0.00-0.51, p = 0.027) 

and animals on Green Island (0.17 ± 0.01, range = 0.00-0.52, p = 0.037), which most likely 

indicates that only the juvenile group includes individuals with high pedigree inbreeding 

values. Mean individual HL of adults on Korapuki Island did not differ from animals on 

Green Island (p = 0.997). 

 

We measured the maximum sprint speed of 63 males, 43 gravid females, and 30 juveniles 

on Korapuki Island. Maximum sprint speed was not explained by HL in either males or 

gravid females. HL was the only factor that explained juvenile sprint speed, and 
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accounted for 18% of the variation in sprint speed. However, juveniles with higher HL ran 

faster than juveniles with lower HL values (F1,28 = 6.18, p = 0.019). We measured maximum 

dive duration of 63 males, 39 gravid females, and 31 juveniles, and maximum dive 

duration was not explained by HL in any group. The relationships between the 

morphological measurements and performance variables are discussed in Miller et al. (in 

review-a, Appendix 1). 

 

Figure 3.4 Distribution of individual homozygosity by locus (HL) values in Green Island 
animals (source population), Korapuki Island adults, and Korapuki Island juveniles. Higher 
HL values indicate that individuals are more homozygous. Mean individual HL was not 
different for Korapuki Island adults and Green Island, but Korapuki Island juveniles had a 
higher mean individual HL than both groups. 
 

3.5 Discussion 

 

Egg-laying skinks translocated from Green Island to Korapuki Island show several 

expected signatures of a genetic bottleneck after translocation, but retain high levels of 

genetic diversity. Skinks on Korapuki Island have high heterozygosity and retain ~80% of 

the allelic diversity of Green Island 14 years after translocation, but the proportion of rare 

alleles has decreased over time. Gametic disequilibrium, an excess of heterozygosity 

(relative to expected heterozygosity at equilibrium), and reduced effective population 

size on Korapuki Island relative to Green Island were detectable in a short time-frame 

after translocation, and reflect their translocation history (i.e. a bottleneck). Juveniles in 

the translocated population are more homozygous than adults, despite these groups 

representing overlapping generations, but adults on Korapuki Island were not more 

homozygous than animals on Green Island. 
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3.5.1 Genetic bottleneck effects 
 

Tests for genetic bottleneck effects are often used to reveal historic or previously 

unknown reductions in population size. By examining the signatures of a genetic 

bottleneck in reintroduced populations with a well-documented reduction in population 

size, it is possible to validate their effectiveness in detecting genetic bottlenecks. Genetic 

drift after a population bottleneck may simultaneously cause a loss of alleles within 

populations and changes in allele frequencies (e.g. Ramstad et al. 2004; Stephen et al. 

2005). Allelic richness was higher in the population on Green Island than in either the 

adult or juvenile populations on Korapuki Island. Rare alleles are most likely to be lost 

during bottlenecks (Allendorf 1986; Luikart et al. 1998) and were least frequent in the 

youngest cohort in the translocated population of egg-laying skinks (Korapuki juveniles). 

Allele frequencies in adults and juveniles on Korapuki Island were not significantly 

different, but both were significantly different from the population on Green Island. 

Pairwise ФPT values were positively correlated with the difference in allelic richness 

among populations. Thus, the differentiation between Green Island (the source) and 

Korapuki Island (the translocation) is most likely due to the loss of alleles during the 

translocation. 

 

Recent population bottlenecks have several effects on genetic structure that persist over 

different time-scales. Bottlenecks in a previous generation could be responsible for 

significant gametic disequilibrium at unlinked loci even when the population size is large, 

but disequilibrium should decay quickly (Hedrick 2000). Although disequilibrium is rarely 

demonstrated empirically in recently bottlenecked populations (but see Miller et al. 

2008), we found significant gametic disequilibrium in the adults on Korapuki Island (older 

cohorts), but not in juveniles (the youngest cohort) that represent later generations. 

Additionally, gametic disequilibrium was not detected in the population on Green Island. 

This observed pattern of gametic disequilibrium suggests that the bottleneck during 

translocation is responsible for the non-random association of alleles at different loci in 

adults on Korapuki Island. As the translocated population rapidly expanded, it is possible 

that disequilibrium decayed quickly, so that it was not observed in the juvenile cohort. 

However, it is also possible that we were not able to detect gametic disequilibrium in the 

juvenile cohort because of small sample size. Estimates of Ne were similar in the adult and 
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juvenile populations using the linkage-disequilibrium method, suggesting that the 

underlying gametic disequilibrium is equivalent in both groups. 

 

Although gametic disequilibrium is a relatively transient signature of a bottleneck, an 

excess of heterozygosity (relative to a population in mutation-drift equilibrium) should be 

detectable for up to 4 Ne generations (Cornuet & Luikart 1996). Many studies examine the 

loss of heterozygosity and allelic diversity after translocation (Fitzsimmons et al. 1997; 

Williams et al. 2000; Stephen et al. 2005; Boessenkool et al. 2007), but relatively few have 

tested for an excess of heterozygosity in both the source and translocated populations 

(but see Maudet et al. 2002; Swanson et al. 2006). All translocated populations of Alpine 

ibex (Capra ibex) showed an excess of heterozygosity, but the source population showed 

the same bottleneck signature (Maudet et al. 2002). Conversely, there was an excess of 

heterozygosity in the adult and juvenile populations on Korapuki Island, but not in the 

source population (Green Island). This pattern suggests that the bottleneck caused by 

translocation, rather than a bottleneck on Green Island prior to translocation, produced 

the excess of heterozygosity. 

 

3.5.2 Maximising Ne during translocation 
 

The reduction of genetic diversity caused by translocation will reduce evolutionary 

potential and increase the extinction risk (Newman & Pilson 1997; Frankham 1999). Thus, 

minimising the reduction in Ne during translocation may help avert long-term 

consequences (Reed et al. 2003). Pregnant females have often been translocated with the 

goal of maximising genetic diversity, but it has been unclear whether translocation of 

pregnant females has actually increased the effective number of founders. Egg-laying 

skinks on Korapuki Island have a significantly larger Ne (46) than would be expected by 

translocation of 30 animals, based on 10,000 simulated populations, but had a 3- to 7-fold 

smaller effective population size than Green Island. The release of gravid females 

accounts for the larger Ne, as these offspring represented additional diversity found in the 

source population, and the Ne estimate is similar to that of a population with the same 

growth rate founded with 50 animals. In species where each founder requires a large 

resource investment (of either money or time), translocation of pregnant females 

presents a means of increasing the effective number of founders and reducing, but not 

eliminating, the impact of genetic drift immediately following translocation. 
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When source populations are small, or when founders of a translocation are taken from 

captivity, pregnant females are valuable to both the source and the translocated 

populations, and release of pregnant females may come at a cost to the source 

population. In such cases, the trade-offs must be assessed relative to the specific goals of 

the programme (Earnhardt 1999). Captive-reared clutches are also often used for 

translocation for conservation reasons (Snyder et al. 1996), but the release of siblings may 

reduce the effective number of founders in these populations. Whilst it is important to 

include relatedness as a criterion for founder selection (e.g. Nelson et al. 2002a), studies 

are needed to assess how the release of only siblings affects genetic diversity and 

effective population size in translocated populations (Moore et al. 2008). 

 

3.5.3 Fitness consequences 
 

Individual heterozygosity value, determined from microsatellite loci, had a significant 

influence on maximal performance of juveniles (measured by sprint speed), but not in 

adults on Korapuki Island. Higher speeds generally result in greater survival and fitness in 

lizards and snakes (Jayne & Bennett 1990; Husak et al. 2006; Irschick et al. 2008). Contrary 

to expectations, more homozygous juveniles ran faster. Therefore, this relationship does 

not provide evidence of inbreeding depression in egg-laying skinks on Korapuki Island, 

but our conclusions are limited by the fact that we did not measure the level of 

inbreeding directly. In using microsatellite-based metrics, it is assumed that 

heterozygosity in a small set of neutral markers is informative about the level of 

inbreeding from pedigrees, yet this assumption has been challenged (Balloux et al. 2004; 

Slate et al. 2004). Heterozygosity-based measures may reflect inbreeding when variation 

in the level of individual inbreeding is high and populations have genetically similar and 

dissimilar individuals, but the power to detect associations between heterozygosity and 

fitness is low when fewer than 10 loci are used (Slate & Pemberton 2002). 

 

If heterozygosity-based measures of inbreeding do accurately reflect true inbreeding in 

O. suteri, two alternate explanations could account for the positive correlation between 

sprint speed and inbreeding: random chance or directional selection. Correlations 

between heterozygosity and fitness are frequently detected in wild populations (e.g. Slate 

et al. 2000; Keller & Waller 2002; Coltman & Slate 2003). Although sprint speed is the most 

commonly used measure of performance in lizards (Van Damme & Vanhooydonck 2001), 

it is an indirect surrogate of fitness and may not accurately predict survival in egg-laying 
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skinks. There are circumstances in which speed may not reflect either the probability of 

survival or fitness, or may be maladaptive. In whiptail lizards (Aspidoscelis tesselata), 

selection only favours faster sprint speed in animals found in open habitats with sparse 

refuge where they are highly vulnerable to predation (Punzo 2007). Frequent stops and 

starts reduce overall speed of hatchling phrynosomatid lizards (Sceloporus spp.), but may 

be more effective for the avoidance of predators (see Brodie 1992; Andrews et al. 2000). 

Juvenile egg-laying skinks may easily find refuge in their boulder beach habitat, and 

individual egg-laying skinks may employ multiple escape tactics to avoid predation 

(Miller et al. in review-a, Appendix 1). Thus, the selective pressure on higher speed may be 

reduced, and in this situation, the observed relationship may be due to chance.  

 

Alternately, directional selection for faster speed could result in inbreeding. Sprint speed 

is heritable (Tsuji et al. 1989; Garland et al. 1990a), and sexual selection favours faster 

males, who sire more offspring than slower males (Husak et al. 2006). In very small 

populations, fast animals could be inbred after a few generations under these conditions. 

This type of directional selection could have a strong influence on the maintenance of 

genetic diversity over time (see Chapter 5), but this force is seldom considered in 

translocated populations. Our data do not distinguish between the alternate 

explanations that the relationship between heterozygosity and sprint speed in juveniles 

is due to selection (i.e. a normal pattern in natural populations of egg-laying skinks), or 

that the relationship is due to chance. Discriminating between these two hypotheses 

would provide valuable information on the dynamics of inbreeding in this translocated 

population and the behaviour of egg-laying skinks.  

 

It is possible that homozygous juveniles, despite having higher sprint speeds, are less 

likely to survive into adulthood. Juveniles on Korapuki Island were more homozygous 

than adults, despite strong overlap of generations in the two groups. Further, the range 

of individual heterozygosity values is larger in juveniles than adults. Juveniles would be 

more homozygous on average than adults when inbreeding is increasing (in generations 

following a bottleneck) or if homozygous juveniles do not survive into adulthood. In the 

former scenario, we would predict that adults on Korapuki Island would have a higher 

mean heterozygosity value than the source population. However, the mean 

heterozygosity value of adults on Korapuki Island was equivalent to animals on Green 

Island. Increased inbreeding and the continued loss of genetic variation in translocated 
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populations may have more insidious long-term consequences, such as the loss of 

adaptive potential, that cannot be measured in a short time frame. 

 

The population of egg-laying skinks on Korapuki Island shows several signatures of a 

bottleneck, but we found no clear evidence of inbreeding depression in the short-term. 

Inbreeding depression has been manifested in decreased survival (e.g. juvenile red deer, 

Coulson et al. 1999) and breeding success (e.g. song sparrows, Keller 1998), or increased 

disease susceptibility (e.g. Soay sheep, Coltman et al. 1999). We used more indirect 

surrogates of fitness, as it is often difficult to measure survival and breeding success in 

highly cryptic species. Thus, it may be harder to asses these direct fitness consequences of 

inbreeding in many species, particularly after translocation. However, inbreeding 

depression has been detected in other translocated populations. For example, highly 

inbred juvenile North Island robins (Petroica longipes) in a translocated population had a 

low probability of survival (Jamieson et al. 2007). The effects of inbreeding depression 

were short-lived, as close inbreeding became less frequent with increasing population 

size (Jamieson et al. 2007), and inbreeding dynamics in translocated populations still 

remain unclear. 

 

3.5.4 Conclusions 
 

When population size increases rapidly after translocation, the effects of inbreeding 

depression may deteriorate as highly inbred individuals become rarer (Jamieson et al. 

2007), but signatures of the genetic bottleneck will be more enduring (this study). 

Recently translocated populations, particularly those translocated for conservation 

reasons, have a low probability of establishment in the short-term because of multiple 

non-genetic factors (Griffith et al. 1989; Dodd & Seigel 1991), and these factors have large 

influences on the design of a translocation. Simultaneously, maximising genetic diversity 

in translocated populations may be essential for their long-term persistence. 

Translocation of pregnant or gravid females may be a viable option for increasing the 

effective number of founders, and long-lived species may benefit from translocation of 

pregnant females. Further data are required from species with varied life history traits to 

determine how genetic bottlenecks during translocation influence inbreeding dynamics 

and the maintenance of genetic diversity over time. 



 

CHAPTER FOUR 
 

The effects of supplementation and serial translocation 

on genetic diversity in species with varied life histories 
 

 

4.1 Abstract 

 

Maintaining genetic variation is important for the success of translocated populations, yet 

the founding event and genetic drift in the period of population growth may cause losses 

of genetic diversity after translocation. Here we test how life history traits influence the 

maintenance of genetic diversity after translocation, and model how management 

actions may further impact genetic diversity. Three species of skink (Reptilia: Scincidae) 

with different life histories were translocated to Korapuki Island, New Zealand between 

1988 and 1992. We sampled source and translocated populations of each species to 

assess the genetic consequences of translocation, and modelled genetic diversity over 10 

generations to evaluate the implications of plausible management techniques. In the 14-

18 years following translocation, the species with the lowest reproductive output 

(Cyclodina whitakeri) retained less heterozygosity than predicted by models, but the 

species with the highest output (Oligosoma suteri) retained more than predicted. Models 

showed that supplementation of the translocated populations with 30 additional animals 

would not reduce the loss of heterozygosity over 10 generations in O. suteri, but would 

for the species with low reproductive output (C. whitakeri and C. alani) by decreasing the 

time required to reach carrying capacity. Further, harvest of 30 C. whitakeri from Korapuki 

Island for a second-order translocation would accelerate the loss of heterozygosity after 

10 generations in both the first- and second-order translocations. Supplementation of 

translocated populations will have the greatest effect during the initial period of 

population growth, as new animals will aid in rapid recovery from a bottleneck and limit 

the impact of genetic drift. Actions that slow population growth (e.g. harvesting from a 

relatively small population) should be avoided.  

 

4.2 Introduction 

 

Population bottlenecks reduce genetic diversity, and may result in short-term decreases 

in fitness (inbreeding depression, Jamieson et al. 2007), increased extinction risk, and 
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reduced evolutionary potential (Frankham 1999; 2005). Indeed, extinction risk increases 

significantly with decreasing genetic diversity (Saccheri et al. 1998). Maintaining genetic 

diversity is an important goal for species management, yet management actions may 

impose bottlenecks. Translocation is a common tool for the conservation of threatened 

species, but translocated populations often have lower genetic diversity than their 

sources at neutral and functional loci (Williams et al. 2000; Miller & Lambert 2004). 

Understanding and predicting how management actions affect genetic diversity in 

translocated populations is identified as a priority both for species recovery (e.g. Towns 

1999) and the broader field of reintroduction biology (Armstrong & Seddon 2008). 

 

Translocations of threatened and endangered species generally have low success rates 

(Griffith et al. 1989), and raise a suite of issues surrounding the species’ physiology, 

ecology, behaviour, and population dynamics that influence the likelihood of success 

(Dodd & Seigel 1991; Armstrong & Seddon 2008). Yet under even the best of 

circumstances, life history characteristics influence whether populations expand rapidly, 

and thus how well genetic diversity is maintained. Long-lived species with overlapping 

generations may retain a high proportion of genetic diversity over several generations 

when carrying capacity is large (Taylor & Jamieson 2008), but smaller populations may 

suffer from inbreeding depression. Supplementation could be used to help restore such 

populations (e.g. Madsen et al. 1999), and has been suggested as a way to maintain 

genetic diversity in translocated populations with very small carrying capacity (~100 

individuals, Grueber & Jamieson 2008). However, it is unclear how supplementation 

influences the maintenance of genetic diversity in translocated populations with larger 

carrying capacity (> 1,000 individuals).  

 

Serial translocations are occasionally conducted with threatened and endangered species 

because source populations may be few and/or fragile. However, the effects of serial 

population bottlenecks are not well understood. Serial translocation has been shown to 

reduce genetic variation in some cases (Lambert et al. 2005), but not others (Taylor & 

Jamieson 2008). In fact, genetic diversity did not differ between first, second, or even 

third-order translocations of South Island saddlebacks (Philesturnus carunculatus 

carunculatus, Taylor & Jamieson 2008). 

 

Here, we investigate the effect of translocation on genetic diversity in three species of 

skink with different life history traits. We also model how several potential management 
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options may impact the maintenance of genetic diversity over 10 generations. 

Specifically, we ask how well models predict the level of heterozygosity maintained over 

the period since release, how serial translocation would affect the maintenance of 

diversity, and whether supplementation (with 10 or 30 animals) would benefit 

translocated populations with large carrying capacities. 

 

4.2.1 Translocation of skinks to Korapuki Island 
 

Three species of skink were translocated to Korapuki Island, New Zealand between 1988 

and 1992: Cyclodina alani (robust skink), C. whitakeri (Whitaker’s skink), and Oligosoma 

suteri (egg-laying skink). These populations were monitored closely to determine post-

release survival and population growth. A fourth species was also translocated (C. oliveri, 

marbled skink), but was only monitored until breeding was detected (Towns & Ferreira 

2001). All of these species are nocturnal, ground-dwelling, and susceptible to predation 

by introduced mammals (Towns & Daugherty 1994). Cyclodina alani and C. whitakeri are 

primarily forest-dwelling viviparous skinks that occupy seabird burrows, rocky areas, and 

forest litter (Robb 1986). Oligosoma suteri is a coastal oviparous species found on boulder 

beaches and rocky shore platforms (Towns 1975a). All three species are found mainly or 

entirely on predator-free offshore islands; C. alani and C. whitakeri are listed as threatened 

by the IUCN, with six and three natural populations, respectively (totalling < 35 and 

< 20 ha). 

 

Translocations were all within the Mercury Island group, off north-eastern New Zealand 

(Figure 4.1), from Green Island (3 ha) and Middle Island (13 ha) that are naturally free of 

mammals, to Korapuki Island (18 ha), from which all introduced mammals (rabbits and 

Pacific rats) were eradicated by 1987 (Towns 1991). The translocations were planned to 

meet objectives for species recovery and ecosystem restoration (Towns et al. 1990; Towns 

& Atkinson 2004), but were constrained by the need to minimise detrimental impacts on 

the parent populations and habitat on the source islands. Founder groups were small 

because the source islands are small and have a high density of seabird burrows, which 

create fragile soils and potential for extensive damage to the habitat. Each translocation 

was designed to have 30 founders, but actual founder group sizes were 14 for C. alani  

and 28 for C. whitakeri, because of post facto decisions to minimise damage to the parent 

populations (Table 4.1, Towns & Ferreira 2001), and an inadequate number of captured 

animals indicated small source populations. 
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Figure 4.1 Map of the Mercury Islands, New Zealand, showing the source and 
translocation sites for Cyclodina alani, C. whitakeri, and Oligosoma suteri. 
 

Survivorship in the 12 months following release on Korapuki Island was as low as 60% (C. 

whitakeri, Towns & Ferreira 2001); sex ratios of the surviving founders were female-biased 

for each species, although the O. suteri release group was intentionally female-biased 

(1M:2F, Table 4.1). Population growth was measured for two of the three species by 1999 

(Towns & Ferreira 2001), and for all three subsequently (KA Miller & DR Towns, unpubl. 

data). In order to protect the fragile ecosystems on Middle and Green Islands, Korapuki 

Island is the proposed source of future translocations of each species to other islands. 

These second-order translocations may be carried out as early as 2015, but the 

implications of serial translocation are unknown. 

 

4.3 Methods 

 

4.3.1 Sample collection and microsatellite genotyping 
 

We attempted to catch animals in both the source and translocated populations using 

baited pitfall traps and by searching at night. However, we did not catch any C. alani on 

the source island (Green Island) over 180 trap nights and 20 hours of searching. We 

therefore caught C. alani on Middle Island to provide estimates of genetic diversity in a 

natural, non-bottlenecked population, but we could not make direct comparisons 

between the source and translocated populations. Populations of O. suteri on Middle and 

Green Islands have similar levels of heterozygosity (KA Miller, unpubl. data), and historic 

levels of genetic diversity in C. alani on the two islands may have been equivalent. 
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Table 4.1 Life history characteristics, release dates, founder group sizes, and estimated 
carrying capacity for the skink species translocated to Korapuki Island. 

 

 Cyclodina alani Cyclodina whitakeri Oligosoma suteri 
Longevity1,2 35 20 20 
Age at maturity2,3,4 5 4 3 
Mean annual clutch size2,3,4,5 3 1 3.7 
Generation interval6 15 10 10 

    

Korapuki Island translocation    
Year of release2 1992 1988 1992 
Sex ratio at release2,3,7 5:7:2 8:5:15 10:20 
Sex ratio of recaptured founders2,3,7 2:8 6:10:1 7:15 
Estimated carrying capacity5,8 4100 2600 5000 
1 Estimated from annual survival of founders after translocation (this study) 
2 Towns & Ferreira 2001 
3 Towns 1994 
4 Towns 1975b 
5 Southey 1985 
6 Estimated from data on longevity and age at maturity (this study) 
7 (Male:Female:Unknown) 
8 Whitaker 1973 

 

We removed ~3 mm of tail tissue from each animal using a sterile scalpel blade. Skinks on 

Korapuki Island were sampled between November 2006 and March 2007 (all species) and 

at release (C. whitakeri only). Additionally, we collected toe tissue samples from O. suteri 

on Korapuki between 1996 and 1999; these samples represent offspring of females that 

were gravid at release (i.e. animals from matings on Green Island) and are thus effectively 

founders of the Korapuki population (Miller et al. in review-b, Chapter 3). We sampled 

source populations between March 2007 and March 2008. All samples were stored in 70% 

ethanol. 

 

We extracted total genomic DNA using a standard proteinase K phenol-chloroform 

protocol (Sambrook et al. 1989) followed by ethanol precipitation, and quantified DNA 

using a NanoDrop® ND-1000 Spectrophotometer at 260 nm. We genotyped all individuals 

at up to 10 polymorphic  microsatellite loci (C. alani: Oligr1, 3, 4, 6, 7, 8, 10, 13, 15, 19; C. 

whitakeri: Oligr 2, 4, 6, 7, 8, 10, 14, 15, 17; O. suteri: Oligr 1, 2, 4, 8, 10, 13; Berry et al. 2003) 

adapted with 5’ M-13 tags (Schuelke 2000).  PCR was carried out on an Eppendorf 

Mastercycler thermocycler as outlined in Miller et al. (2009b, Chapter 2). PCR products 

were pooled for genotyping and run on an ABI3730 Genetic Analyzer (Applied 

Biosystems, Inc.). Allele sizes were scored manually using GENEMAPPER 3.7 (Applied 

Biosystems, Inc.). 
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4.3.2 Data analysis 
 

Prior to microsatellite analyses, we calculated the frequency of null alleles in MICRO-

CHECKER 2.2 (Van Oosterhout et al. 2004). Three loci (Oligr3, Oligr13, and Oligr15) had a 

high frequency of null alleles (> 0.15) in the Korapuki and Middle Island populations of C. 

alani, and were excluded from further analyses. 

 

We divided samples into three groups: source, founders, and Korapuki Island populations. 

We used Middle Island for the source population for C. alani (as no animals were caught 

on Green Island). Departures from Hardy-Weinberg proportions were calculated in 

GENEPOP 4.0 (Rousset 2008). Tests of significance were combined over all loci using 

Fisher’s combined probability test. Significance was assumed at p < 0.05. We tested for 

gametic disequilibrium within each population using a Fisher’s exact test for all pairwise 

locus comparisons in GENEPOP 4.0.  

 

To evaluate a loss of allelic diversity after translocation of each species, we calculated 

allelic richness (number of alleles corrected for sample size) of each species using 

FSTAT 2.9 (Goudet 1995). For C. alani, we excluded the founder group from the calculation 

of allelic richness because of the small sample size (n = 5). Allele frequency mode shifts 

were assessed visually using the method of Luikart et al. (1998). As we had only one 

temporal sample, we generated estimates of the effective population size (Ne) of each 

translocated population using the linkage disequilibrium method (implemented in LDNe, 

Waples & Do 2008). We excluded alleles with frequencies less than 0.05, as inclusion of 

rare alleles causes an upward bias in Ne estimates (Waples & Do 2008) and used 95% CIs 

adjusted using the jackknife method. To test for differences in allele frequencies, we 

conducted pairwise analyses of molecular variance (AMOVA, Excoffier et al. 1992) in 

GENALEX 6.1 (Peakall & Smouse 2006) between the source population, founders, and the 

Korapuki population for C. whitakeri and O. suteri.  

 

We used the program VORTEX 9.92 (Lacy 1993) to model the expected loss of 

heterozygosity over 10 generations under several management scenarios in each of the 

translocations to Korapuki Island and the proposed second-order translocations. VORTEX 

assigns two unique alleles to each founder; in each iteration, these hypothetical alleles 

are ‘dropped’ through the simulated population from parents to offspring according to 

Mendelian inheritance. At the end of each iteration, the proportion of heterozygosity that 
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remains in the population is calculated. We ran 10,000 iterations for each scenario to 

provide estimates of the loss of heterozygosity given the stochastic natures of inheritance 

and population growth.  

 

We modelled the loss of heterozygosity and the number of years to reach carrying 

capacity in a first-order translocation with the intended founder groups (30 founders) and 

the true founder group size on Korapuki Island for each species (to account for first-year 

survivorship, Table 4.1). To determine whether supplementation of the populations on 

Korapuki Island would reduce the loss of heterozygosity, we also modelled several 

potential supplementation strategies: (1) 30 adults in 2015, (2) 10 adults in 2015, and (3) 

10 adults in three successive years (starting in 2015; total of 30 supplemented). For each 

strategy, we used three different sex ratios (all male, all female, or equal sex ratio), 

because different sexes have different influences on population growth rates and 

ultimately how well genetic diversity is maintained. 

 

As Korapuki Island is proposed as a source for a second-order translocation, we modelled 

two strategies for the harvest of 30 animals from Korapuki Island in the year 2015 for each 

species: (1) equal sex ratio and (2) 1M:2F. To evaluate the effect of a serial bottleneck, we 

also modelled loss of heterozygosity in the second-order translocation in 2015 (under 

scenarios of no supplementation) and translocation in 2025 (i.e. 10 years after 

supplementation). 

 

4.4 Results 

 

All populations were in Hardy-Weinberg proportions at all loci (p > 0.05). Significant 

gametic disequilibrium (p < 0.05) was detected in five of 15 pairwise locus comparisons in 

the O. suteri population on Korapuki Island after sequential Bonferroni correction. No 

significant gametic disequilibrium was detected in any other population. 

 

Mean allelic richness and heterozygosity was lower in the translocated populations on 

Korapuki Island than the natural populations for each species (Table 4.2). There was no 

mode shift of allele frequency distributions in any group surveyed (Figure 4.2), but the 

mean proportion of rare alleles (frequency < 0.1) was lower in the translocated 

population than the natural population for each species. On Korapuki Island, Ne was 

estimated at 14.1 for C. alani, 10.6 for C. whitakeri, and 47.5 for O. suteri. Levels of 
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differentiation between the source and translocated populations of C. whitakeri and O. 

suteri were low but significant (ФPT = 0.022 and ФPT = 0.021, respectively, p < 0.01 for both 

species), but founder groups were not different from the source or translocated 

populations for either species (ФPT = 0.000- 0.010, p > 0.05). 

 

Table 4.2 Sample sizes, heterozygosity (HE), and allelic richness measured in each skink 
population. Ne estimates (95% CI) and the predicted and actual proportion of HE of the 
source population remaining in the translocated populations on Korapuki Island in the 
sampling year (2006). 
 

 Cyclodina alani Cyclodina whitakeri Oligosoma suteri 

Sample Sizes    

Source 301 32 53 

Founders2 5 16 30 

Korapuki3 36 28 168 
    

No. loci used 7 9 6 
    

HE    

Source 0.6191 0.622 0.821 

Founders2 0.363 0.597 0.799 

Korapuki3 0.540 0.575 0.814 
    

Allelic richness    

Source 6.001 7.23 9.42 

Founders2 na 7.08 8.82 

Korapuki3 3.76 5.74 8.61 
    

Ne on Korapuki2  14.1 (6.7-29.3) 10.6 (8.0-14.2) 47.9 (38.3-60.4) 
    

Proportion HE    

Predicted 0.956 0.969 0.975 

Actual3 na4 0.924 0.990 
1 Middle Island was used because no animals were caught in the true source population 

(Green Island) 
2 Founders recaptured in the sampling year or sampled at release 
3 Excluding founders 
4 Direct comparison with the source could not be made 

 

4.4.1 Effects of translocation and supplementation modelled in VORTEX 
 

The populations of C. alani, C. whitakeri, and O. suteri on Korapuki Island are likely to reach 

carrying capacity after 76, 148, and 35 years (~5, 15, and 3.5 generations) respectively. Ten 

generations after release, populations on Korapuki are likely to retain 89.9-96.4% of the 

heterozygosity of the source population (Figure 4.3). As less than half of the intended 
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number of founders was used for translocation of C. alani (14 rather than 30 skinks), this 

population is likely to have the greatest loss of heterozygosity after 10 generations 

(10.1%), despite reaching carrying capacity relatively quickly. Had the intended founder 

group size been translocated, this population should have retained ~96.6% of the original 

heterozygosity after 10 generations and reached carrying capacity after 60 years (4 

generations, Table 4.3). 

 

Figure 4.2 Allele frequency distribution in skink populations on Korapuki Island (black 
bars) and in the source populations (grey bars). For Cyclodina alani, allele frequency 
distributions are for Middle Island, because no skinks were caught on the source island. 
No population showed a significant mode shift, but rare alleles were less common in the 
translocated population for each species. 
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Figure 4.3 Comparison between the predicted loss of heterozygosity (solid line) and 
population size (broken line) over 10 generations for each translocated species on 
Korapuki Island. Differences in scale for each species reflect different generation intervals 
(Cyclodina alani: ~15 years, C. whitakeri and Oligosoma suteri: ~10 years). The actual 
amount of heterozygosity of the source populations retained for C. whitakeri and O. suteri 
are shown with an X (not calculated for C. alani because no animals were caught in the 
source population). 
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For O. suteri, none of the supplementation scenarios modelled resulted in a greater 

retention of heterozygosity or shorter time to reach carrying capacity. However, up to 

93.6 and 95.7% heterozygosity of the source could be retained in the populations of C. 

alani and C. whitakeri, respectively after 10 generations by supplementation (Table 4.3). 

For both species, the best option for minimising the loss of genetic diversity is a single 

introduction of 30 animals of equal sex ratio; under this scenario, the populations should 

reach carrying capacity after 68 (C. alani) and 111 (C. whitakeri) years (~4.5 and 11 

generations, respectively). The introduction of 10 animals (equal sex ratio) over each of 

three consecutive years gave similar results. The amount of heterozygosity retained was 

similar when all male or all female C. alani were released (Table 4.3). However, the 

addition of 30 male C. whitakeri resulted in the retention of less heterozygosity (94.6%) 

than addition of either 30 females (95.3%) or 15 animals of both sexes (95.7%, Table 4.3). 

 

Table 4.3 Predicted proportion of source heterozygosity (HE) retained after 10 
generations and the time taken to reach carrying capacity (K) in the first-order 
translocation (Korapuki Island). Each translocation was designed to have 30 founders, but 
true founder groups were 14 for Cyclodina alani and 28 for C. whitakeri. Supplementation 
and harvest scenarios (respectively) were all modelled for the year 2015. 
 

 Cyclodina alani  Cyclodina whitakeri  Oligosoma suteri 

 HE Years to K  HE Years to K  HE Years to K 

No. of founders         

Intended (30) 0.965 59  0.931 140  0.964 35 

True (14-30) 0.899 76  0.913 148  0.964 35 

         

Supplementation         

301 0.936 68  0.957 111  0.966 35 

30F 0.932 64  0.953 98  0.966 34 

30M 0.931 83  0.946 144  0.966 35 

101 0.915 72  0.934 123  0.965 35 

10F 0.914 72  0.934 116  0.965 35 

10M 0.913 70  0.929 148  0.965 35 

101 x 3 years2 0.934 68  0.955 112  0.965 34 

10F x 3 years2 0.930 65  0.952 100  0.965 34 

10M x 3 years2 0.930 75  0.945 144  0.965 35 

         

Harvest         

1:13 0.893 87  0.892 182  0.964 35 

1:23 0.892 98  0.885 189  0.964 35 
1 1:1 sex ratio 
2 supplementation with a total of 30 animals in 3 successive years 
3 sex ratio (M:F) 
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4.4.2 Effects of serial translocation modelled in VORTEX 
 

By including a harvest of skinks from Korapuki Island, we simulated the effects of the 

proposed second-order translocation of each species (Table 4.3). Harvesting O. suteri had 

no effect on the amount of heterozygosity retained on Korapuki Island after 10 

generations on Korapuki Island or the time it took to reach carrying capacity, but slightly 

less heterozygosity was retained when C. alani were harvested (equal sex ratio = 89.3%, 

1M:2F = 89.2%) than would be expected without harvest (89.9%). For C. whitakeri, the 

population on Korapuki Island retained less heterozygosity under harvest scenarios 

(equal sex ratio = 89.2%, 1M:2F = 88.5%) than in the scenario without harvest (91.3%). 

Harvest of C. alani  and C. whitakeri (equal sex ratios) increased the time it takes to reach 

carrying capacity to 87 and 182 years (~6 and 18 generations), respectively. 

 

A second-order translocation of O. suteri would retain approximately 93.2% of the 

heterozygosity from the source population after 10 generations (a 3.2% decline of 

heterozygosity relative to the harvested Korapuki Island population, Table 4.4). Second-

order translocations of C. alani and C. whitakeri would retain 89.8% and 88.7% of the 

heterozygosity of the source populations respectively (i.e. declines of < 0.5% relative to 

the harvested populations on Korapuki Island). By supplementing the populations on 

Korapuki Island with 30 animals of equal sex ratio, the retention of heterozygosity over 10 

generations in a second-order translocation relative to the wild population could increase 

to 91.2% (C. alani), 90.1% (C. whitakeri), and 93.4% (O. suteri, Table 4.4). 

 

Table 4.4 Predicted proportion of source heterozygosity retained in a second-order 
translocation (e.g. translocation of 30 skinks from Korapuki Island) after 10 generations. 
Predictions are shown for the second-order translocation from Korapuki Island in 2015 
(no supplementation), or in 2025 (10 years after supplementation of the population on 
Korapuki Island). 
 

 Cyclodina alani Cyclodina whitakeri Oligosoma suteri 

No supplementation 0.898 0.887 0.932 

    

Strategy for supplementation of 
Korapuki Island 

   

30 (1M:1F) 0.912 0.901 0.934 

30F 0.908 0.898 0.934 

30M 0.909 0.899 0.934 

10 (1M:1F) 0.894 0.887 0.933 
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4.5 Discussion 

 

Translocation of three species of skink to Korapuki Island caused losses of heterozygosity 

and allelic diversity. The population of C. whitakeri on Korapuki Island retained a smaller 

proportion of the heterozygosity of its source population than predicted by models, but 

the population of O. suteri retained a greater proportion. Supplementation of 

translocated populations on Korapuki Island reduces the loss of heterozygosity over 10 

generations in C. whitakeri and C. alani, but not O. suteri. Second-order translocation of 30 

C. whitakeri from Korapuki Island would reduce the proportion of heterozygosity retained 

on Korapuki Island, while harvests of C. alani or O. suteri would have little to no effect. As 

expected, second-order translocations of 30 skinks from Korapuki Island would retain less 

diversity than a first-order translocation of 30 animals for all three species. Surprisingly, 

second-order translocations of C. alani and C. whitakeri would retain similar amounts of 

heterozygosity after 10 generations as the harvested populations on Korapuki Island. 

 

The strength of a bottleneck influences the amount of genetic diversity initially retained, 

but the duration of the bottleneck will affect how well that diversity is maintained over 

many generations (Allendorf & Luikart 2007). Thus, founder group size dictates how much 

diversity is represented in a translocated population, but the rate of population 

expansion affects how well that diversity is maintained. With identical founder group 

sizes for each species, translocated populations of C. whitakeri (i.e. the species with the 

lowest reproductive output) loses more genetic diversity over 10 generations than C. 

alani or O. suteri. Therefore, translocations of species with low reproductive output may 

require more founders to meet genetic goals for management. As species with low 

reproductive output are also generally rarer, a potential dilemma arises between the 

lower availability of founders for a translocation and the greater number required to meet 

the genetic goals of management. Similarly, rarer species may have increased extinction 

risks after translocation and thus require larger founder groups (Towns & Ferreira 2001). 

 

4.5.1 Do models of genetic diversity at neutral loci represent losses of functional 
diversity? 
 

Models of neutral genetic variation have been questioned, as they may have only a 

limited ability to predict the effects of a bottleneck on quantitative (polygenic) variation 

(Reed & Frankham 2001). Where quantitative variation is purely additive, it is lost at the 
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same rate as neutral heterozygosity, yet many polygenic traits associated with fitness 

often deviate from additivity and have large amounts of dominance and epistatic genetic 

variance (Crnokrak & Roff 1995). Empirical studies of the effect of bottlenecks on 

quantitative variation are somewhat contradictory; after a reduction in population size, 

quantitative variation may be maintained (Van Oosterhout & Brakefield 1999), lost 

(Gilligan et al. 2005), or even gained (Saccheri et al. 2001) by the conversion of dominance 

and epistatic variation to additive variation (Wang et al. 1998). However, the loss of 

genetic variation at some functional loci (e.g. genes of the major histocompatibility 

complex, MHC) after a bottleneck is comparable to that lost at neutral markers (Miller et 

al. 2008), and genetic drift in small populations generally outweighs balancing selection 

at MHC loci (Miller & Lambert 2004; Campos et al. 2006, but see Aguilar et al. 2004). Thus, 

models based on neutral markers can provide an indicator of genetic diversity at some 

functional loci, and can be used to evaluate the merit of various management actions. 

 

4.5.2 How much genetic diversity is enough? 
 

The genetic goals for management of translocated populations will influence how many 

founders should be released, whether additional releases are required, and whether serial 

translocation is a viable option, yet specific targets for the maintenance of genetic 

diversity are rarely included in recovery programs for species in New Zealand (Grueber & 

Jamieson 2008). Commonly cited targets are 90-95% heterozygosity over 100-200 years 

(Soulé et al. 1986; Lacy 1987; Allendorf & Ryman 2002), but it is generally agreed that the 

more heterozygosity retained, the better (Franklin & Frankham 1998; Lynch & Lande 

1998). In many captive breeding programs, it is possible to equalise founder contributions 

to maximise the retention of genetic diversity and reduce inbreeding (but see Moore et 

al. 2008). However in translocated populations, it is not possible to manage breeding 

pairs. Although predictions can be made about the retention of genetic diversity before 

translocation, the stochastic nature of inheritance and the variability of population 

growth mean that continued genetic monitoring is required. Genetic monitoring during 

the period of population growth after translocation can give insight into how equally 

founders are represented and whether populations will meet genetic goals for 

management. 
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4.5.3 Genetic impacts of first- and second- order translocation 
 

In monitoring three species of skink 14-18 years after translocation, we found that genetic 

diversity in the populations of C. alani and C. whitakeri is lower than predicted. We 

therefore recommend that some restorative genetic management be undertaken. The 

predicted losses of genetic diversity in each of the skink populations on Korapuki Island 

after 10 generations fall within the lower targets for maintenance of heterozygosity. 

These predictions are likely to still be overestimates, as the actual heterozygosity retained 

over 14-18 years was lower than predicted for at least one species (C. whitakeri), and 

probably a second (C. alani, but we could not directly evaluate heterozygosity in the 

source population). The losses are not as large as predicted for other species (e.g. takahe, 

Porphyrio hochstetteri, Grueber & Jamieson 2008), but if the actual losses of 

heterozygosity over 10 generations for C. whitakeri and C. alani are greater than 

predicted, they would fall well outside the target values. 

 

The effective population sizes of each species on Korapuki Island relative to the number 

of founders released reflect how well diversity was maintained over 14-18 years. The 

population of O. suteri retained more heterozygosity than predicted over 14 years and 

had a larger Ne than the number of animals released, because the release of gravid 

females was successfully used to maximise genetic diversity in this population (Miller et 

al. in review-b, Chapter 3). On the other hand, the population of C. whitakeri had an Ne 

almost three times smaller than the number of founders released (and half the number of 

founders that survived translocation). This population also lost more heterozygosity over 

18 years than expected. 

 

Our models show that supplementation while translocated populations are small could 

be used to slow the long-term loss of genetic diversity (e.g. C. whitakeri and C. alani). 

However, when populations expand rapidly after translocation (e.g. O. suteri), 

supplementation has little impact on the amount of heterozygosity maintained over 10 

generations. Supplementation increases the rate of population growth, thus reducing the 

time required to reach carrying capacity for C. alani and C. whitakeri (by 8 and 37 years, 

respectively), but not for O. suteri. Similarly, harvest for a second-order translocation has 

severe impacts on small populations, but little to no impact on populations that have 

expanded rapidly. 
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It must be noted that the scenarios modelled assume that all supplemented (or 

harvested) individuals survive translocation. Low survivorship after release must therefore 

be accounted for by increasing the number of animals supplemented (or harvested). In 

the case of supplementation of the Korapuki Island population with 30 C. whitakeri, up to 

50 animals would need to be released in order to account for only 60% survivorship 

(Towns & Ferreira 2001). However, increasing the number of animals harvested for a 

second-order translocation would simultaneously accelerate the loss of genetic diversity 

on Korapuki Island by increasing the duration of the bottleneck.  

 

Serial translocation of skinks from Korapuki Island is proposed to reduce impacts on the 

wild sources (Middle and Green Islands). Whilst this goal is valid, and certainly wild 

populations should not be harmed by the removal of animals, serial translocation of 

species with slow population growth rates may be undesirable. If C. alani or C. whitakeri 

were harvested from Korapuki Island, neither translocated population would meet targets 

for the maintenance of genetic diversity. Even after supplementing populations on 

Korapuki Island, genetic diversity in the second-order translocations would be 

considerably lower than a first-order translocation of the same size. This creates a conflict 

between the goals for managing the wild and translocated populations: establishing new 

populations that meet recovery goals, whilst minimising disturbance to the wild 

populations. Similar conflicts arise when translocations are designed using animals from 

captivity: using genetically over-represented animals as founders is the best option for 

captive programmes, but the worst for the translocated population (Earnhardt 1999). 

When such conflict arises, the management options must be evaluated in light of the 

demographic and genetic goals for species recovery. Cyclodina alani and C. whitakeri have 

six and three remaining natural populations, respectively. Therefore, considerable 

pressure exists for further translocations, but postponing second-order translocations 

until the populations on Korapuki Island are larger may be a better option for 

management in the long-term. 

 

Lastly, our study underlines the need for thorough population surveys in proposed source 

populations prior to translocation. As we were unable to find any C. alani on Green Island 

(the source for translocation to Korapuki Island), it is likely that the population on Green 

Island was very small, and that the harvest of animals for translocation had negative 

demographic consequences. Although supplementation would help to slow the loss of 

genetic diversity in the population of C. alani on Korapuki Island, animals could not 
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feasibly be sourced from Green Island, and supplementation would require mixing 

populations. As Middle, Green, and Korapuki Islands were connected within the last 6,000 

years (Towns 1994), it is unlikely that populations on Green and Middle Islands are locally 

adapted. Supplementing the translocated population on Korapuki Island with C. alani 

from Middle Island would mimic the historic relationships between populations. 

 

In conclusion, rapid population growth is essential for maximising the retention of 

genetic diversity and reducing the effects of inbreeding depression. Reducing the 

duration of the bottleneck after translocation should be a major consideration when 

designing translocations, and our research shows that actions that slow population 

growth (e.g. harvest from a relatively small population for a second order translocation) 

should be avoided. Supplementation of translocated populations will have the greatest 

effect during the period of population growth, as new animals will aid in rapid recovery 

from a bottleneck. 

 

 



 

CHAPTER FIVE 
 

How do reproductive skew and founder group size affect 

genetic diversity in reintroduced populations? 
 

 

5.1 Abstract 

 

Reduced genetic diversity results in short-term decreases in fitness and reduced adaptive 

potential, which leads to an increased extinction risk. Therefore, maintaining genetic 

variation is important for the short- and long-term success of reintroduced populations. 

Here we evaluate how founder group size and variance in male reproductive success 

influence the long-term maintenance of genetic diversity after reintroduction. We used 

microsatellite data to quantify the loss of heterozygosity and allelic diversity in the 

founder groups from three reintroductions of tuatara (Sphenodon spp.), the sole living 

representatives of the reptilian order Rhynchocephalia. We then estimated the 

maintenance of genetic diversity over 10 generations (400 years) using population 

viability analysis. Reproduction of tuatara is highly skewed, with as few as 30% of males 

mating across years. Predicted losses of heterozygosity over 10 generations were low 

(1-14%), and as predicted, populations founded with more animals retained a greater 

proportion of the heterozygosity and allelic diversity of their source populations and 

founder groups. Greater male reproductive skew led to a greater loss of genetic diversity 

over 10 generations, but only accelerated the loss of genetic diversity at small population 

size (< 250 animals). A reduction in reproductive skew at low density may facilitate the 

maintenance of genetic diversity in small reintroduced populations. However, if 

reproductive skew is high and density-independent, larger founder groups could be 

released to achieve genetic goals for management. 

 

5.2 Introduction 

 

Maintaining genetic diversity is a common goal for species management, yet routine 

management actions such as reintroductions may impose genetic bottlenecks. After a 

bottleneck, reduced genetic diversity can result in short-term decreases in fitness 

(inbreeding depression, Jamieson et al. 2007), increased extinction risk (Saccheri et al. 

1998), and reduced evolutionary potential (Frankham 1999; 2005). Effective management 
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of genetic diversity in reintroduced populations is therefore important for both short- 

and long-term success (Fitzsimmons et al. 1997; Armstrong & Seddon 2008), but founder 

group sizes are often small (Griffith et al. 1989), and reintroduced populations often have 

lower genetic diversity than their sources at neutral and functional loci (Williams et al. 

2000; Miller & Lambert 2004). Predicting how management actions affect genetic 

diversity in reintroduced populations is therefore a priority both for species recovery (e.g. 

Towns 1999) and in the broader field of reintroduction biology (Armstrong & Seddon 

2008). 

 

Several factors will differentially affect the maintenance of genetic diversity in 

reintroduced populations. First, while reintroductions, particularly those with small 

founder groups, are likely to cause a genetic bottleneck and promote losses of genetic 

diversity, losses of diversity could be minimised when populations expand rapidly after 

reintroduction (Chapter 4). Second, unequal reproduction (i.e. founder representation in 

the offspring) may lead to a smaller effective population size, but a high degree of 

generation overlap may minimise this effect (Nunney 1993). Lastly, density-dependence 

in the mating and social systems (Kokko & Rankin 2006) may accelerate or slow the loss of 

genetic diversity. 

 

In many species, mating success is unequal among individuals (Emlen & Oring 1977), and 

this variance can lead to decreases in effective population size (Anthony & Blumstein 

2000). Indeed, highly polygynous mating systems, including harem and dominance 

polygyny, can lead to very low effective population sizes when generations are non-

overlapping (Nunney 1993; Parker & Waite 1997). As the degree of generation overlap 

increases, the impact of varying reproductive success is harder to quantify. As the 

generation interval increases, the reduction in the effective population size should be 

minimised (Nunney 1993), yet at small population sizes, even a slight reduction in the 

effective population size could result in rapid genetic drift. However, the effect of 

variation in male reproductive success is unclear when population size is increasing (e.g. 

after reintroduction). 

 

Mating systems and the determinants of male reproductive success are often density-

dependent (Kokko & Rankin 2006). When males interact locally, for example, dominant 

males may thwart mating attempts of nearby subordinate males. When male-male 

competition increases with density, theory predicts that a smaller proportion of males 
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will successfully mate at higher density (Kokko & Rankin 2006). However, this relationship 

does not always hold. Large male seed bugs (Neacorphyus bicrucis) defend territories 

against smaller males in order to acquire mates. At high density, however, these large 

males are less likely to monopolize territories, and smaller males are more likely to mate 

(McLain 1992). At very high densities, the energetic costs of site defence outweigh the 

reproductive benefits (Brown 1969; Emlen & Oring 1977), and males may abandon 

territoriality altogether (Maher & Lott 2000). Thus, variation in male reproductive success 

may change at differing population densities. 

 

We assessed how unequal reproductive success and founder group sizes influence the 

long-term maintenance of genetic diversity in reintroduced populations. We use the term 

reproductive skew to specify the percentage of males that do not mate during their 

lifetime (i.e. those excluded from mating by dominant males). 

 

5.2.1 The mating system of a rare reptile 
 

Tuatara (Sphenodon spp.) are threatened reptiles endemic to New Zealand, and are the 

sole representatives of the ancient reptilian order Rhynchocephalia (Cree & Butler 1993). 

They are medium-sized, territorial, and extremely long-lived (possibly 100 years, Dawbin 

1982; Cree 1994). Females breed asynchronously and are reproductively active, on 

average, once every four years. Males are capable of reproduction every year (Cree et al. 

1992). Tuatara are primarily seasonally monogamous, with low levels of polygyny and 

polyandry (< 10%). However, they are both polygynous and polyandrous across seasons 

(Moore et al. in review). Males defend territories that overlap with an average of four 

females, not all of which are receptive in any one year (Moore et al. in press). Large male 

body size is the primary determinant of reproductive success, but mate choice is also 

influenced by disassortative mating at MHC loci (major histocompatability complex, 

Miller et al. 2009a). Large males occupy areas where females are most dense, and they 

interfere with courtships and prevent mating of smaller males (Moore et al. in press). 

Large body size in tuatara is most likely influenced by resource availability rather than 

genetic factors (Miller et al. 2009a). By out-competing small males for food, large males 

may also limit the growth of small males and thus lifetime mating opportunities. Male 

reproductive skew is high, with as few as 30% of males obtaining mates across years (i.e. 

70% reproductive skew), but this relationship may change with density. In habitats with 

lower tuatara density, males may be less able to defend receptive females whose 
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territories overlap their own, as the average body size of males that successfully mate is 

smaller (Moore et al. in review). Further, in a captive population of eight tuatara, three of 

the four males successfully sired offspring over 15 years. However, the largest male sired 

80% of all offspring (Moore et al. 2008). 

 

5.2.2 Conservation of tuatara by reintroduction 
 

Tuatara were once found throughout mainland New Zealand, but are now restricted to 

~30 offshore islands that are free of introduced mammalian predators (Cree & Butler 

1993). Between 1995 and 2008, tuatara were reintroduced to 12 sites. Four natural 

populations of tuatara were reduced to very small sizes because of predation by 

introduced mammals. All individuals captured on these islands were taken into captivity, 

and captive-bred and reared offspring have been reintroduced to their original islands, 

which were cleared of introduced mammals. The other eight reintroductions were from 

islands to areas within their former range now cleared of mammalian predators. A total of 

five source populations were used, but only a single source was used to found each 

reintroduction. Five reintroductions were sourced from two islands: Stephens Island (2 

reintroductions) and North Brother Island (3 reintroductions). Stephens Island (150 ha, 

40°40′S, 174°00′E) has the largest population of tuatara (30- 50,000 individuals, Newman 

1987) and high levels of genetic diversity at both neutral and functional loci (Miller et al. 

2007; Hay & Lambert 2008). North Brother Island (4 ha, 41°07′S, 174°27′E) has a small 

population size (~350 adults, Newman 1877; Nelson et al. 2002b) and very low levels of 

genetic diversity at neutral and functional loci (Miller et al. 2008).  

 

Initial survival of adults in the first year after reintroduction is high (at least 80%, and 

probably higher, McKenzie 2007), and tuatara show rapid increases in both body size and 

condition (Nelson et al. 2002a; McKenzie 2007). However, successful reproduction has 

only been confirmed in three reintroduced populations, as hatchling and juvenile tuatara 

are extremely difficult to detect. Because of the extreme longevity, long reproductive 

interval, and cryptic behaviour of tuatara, demographic and genetic models are 

important for predicting the effects of management actions. 

 

We used three well-monitored reintroduced populations of tuatara to measure losses of 

genetic diversity in the founder groups and to predict the maintenance of that diversity 

over 10 generations. In order to determine the effects of reproductive skew and founder 
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group sizes on genetic diversity in reintroduced populations of tuatara, we used 

microsatellite data from source populations with high and low levels of genetic diversity 

to quantify the initial genetic bottleneck (i.e. the loss of alleles in the founder groups), 

and to predict the loss of heterozygosity and allelic diversity over 10 generations with 

different founder group sizes. 

 

5.3 Methods 

 

5.3.1 Microsatellite genotyping 
 

Tuatara were reintroduced from North Brother Island to Titi and Matiu/Somes Islands in 

1995 and 1998 (with 68 and 55 founders, respectively, Figure 5.1). In 2005, 70 tuatara 

were reintroduced from Stephens Island to Karori Wildlife Sanctuary, a fenced reserve on 

the New Zealand mainland cleared of mammalian predators; this population was 

supplemented with an additional 130 tuatara in 2007. We sampled DNA from tuatara in 

both the source and reintroduced populations (Figure 5.1), by taking buccal swabs or 

blood samples. We randomly sampled 246 tuatara from Stephens Island and 55 tuatara 

from North Brother Island. Animals reintroduced to Karori Wildlife Sanctuary were 

sampled at the time of translocation, and animals on Titi and Matiu/Somes Islands were 

sampled between December 2006 and March 2007 (Austral summer). Only a subset of 

tuatara in reintroduced populations are caught in any one season, due to their cryptic 

behaviour and the short duration of most survey trips (Nelson et al. 2002a). Therefore, 

sample sizes from Titi and Matiu/Somes Islands are smaller than the number of founders 

released (Figure 5.1). 

 

We extracted total genomic DNA using a standard proteinase K phenol-chloroform 

protocol (Sambrook et al. 1989) followed by ethanol precipitation or using a Qiagen 

DNEasy kit. We genotyped all animals from North Brother Island at six polymorphic 

microsatellite loci (A12N, C11P, C12F, E11N, H5H and H4H, Aitken et al. 2001; Hay & 

Lambert 2008). Animals from Stephens Island were genotyped at one additional locus 

(C2F). PCR was carried out on an Eppendorf Mastercycler thermocycler as outlined in 

Moore et al. (2008), and products were run on an ABI3730 Genetic Analyzer (Applied 

Biosystems, Inc.). Allele sizes were scored manually using GENEMAPPER 3.7 (Applied 

Biosystems, Inc.). 
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Figure 5.1 Map of Cook Strait, New Zealand, showing the source populations (North 
Brother and Stephens Islands) and reintroduction sites (Titi Island, Matiu/Somes Island, 
and Karori Wildlife Sanctuary) in this study. The number of founders released during each 
reintroduction is specified, and the number of individuals sampled is given in brackets. 
 

5.3.2 Data analysis 
 

Deviations from Hardy-Weinberg equilibrium (HWE) were tested in GENEPOP 4.0 (Rousset 

2008). Tests of significance were combined over all loci using Fisher’s combined 

probability test, and significance was assumed at p < 0.05. The expected number of 

alleles represented E(n') in founder groups of N individuals from North Brother and 

Stephens Islands was calculated using the formula 

∑
=

−−=
n

j

N

jpnnE
1

2)1()'(  

where n is the starting number of alleles and pj is the frequency of the jth allele (Allendorf 

1986). We then compared the actual number of alleles detected in each of the 

reintroduced populations to that expected with the number of founders. The expected 

proportion of the original heterozygosity remaining in a founder group of N individuals 

(Allendorf 1986) was calculated using the formula 

N2

1
1−  
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We used VORTEX 9.92 (Lacy 1993) to model the expected loss of heterozygosity (h) and 

allelic diversity (A) over 10 generations in reintroduced populations of tuatara from 

Stephens and North Brother Islands (for demographic input parameters, see Table 5.1). 

The mean generation interval in our simulations, calculated in VORTEX from a stable age 

distribution, was 39.5 using our input parameters. Therefore, we ran each simulation for 

400 years (~10 generations). VORTEX assigns two unique alleles to each founder; in each 

iteration, these hypothetical alleles are ‘dropped’ through the simulated population from 

parents to offspring according to Mendelian inheritance. At the end of each iteration, the 

proportion of h that remains (or 1 – f, the inbreeding coefficient) in the population is 

calculated using this infinite allele model. Thus, with all other demographic parameters 

being equal, different h values result from differences in either the number of founders or 

carrying capacity. We used microsatellite data from Titi Island and Karori Wildlife 

Sanctuary to calculate allele retention when reintroductions are founded from low- 

(North Brother Island) and high-diversity (Stephens Island) source populations. 

Microsatellite diversity in tuatara reflects the amount of diversity seen at MHC loci (Miller 

et al. 2008), which are the most variable known vertebrate genes. We ran 1,000 iterations 

for each scenario to provide estimates of the loss of h and A given the stochastic natures 

of inheritance and population growth.  

 

Prior to running models of different founder group sizes and levels of reproductive skew, 

we tested the influence of inbreeding depression on the loss of h after 10 generations in 

our models. We used groups of 30 adults with each of three levels of reproductive skew 

(70%, 50%, and 0%) with no inbreeding depression and with inbreeding depression (3.14 

lethal equivalents/individual, 50% due to recessive lethals). Inbreeding depression had 

little effect on the amount of h retained after 10 generations, even at an unrealistically 

low carrying capacity (5000 individuals) for the population in Karori Wildlife Sanctuary 

(<0.1% less h retained relative to models with no inbreeding depression). Therefore, we 

ignored inbreeding depression in further models. 

 

To determine how well h and A are maintained for 10 generations with different founder 

groups, we modelled four different founder group sizes for translocations from Stephens 

and North Brother Islands: 200 adults, 70 adults, 30 adults, and 30 juveniles. Two-hundred 

adults represent the maximum number of wild founders used for reintroduction; 70 

adults represent the first reintroduction to Karori Wildlife Sanctuary and a similar founder 

group to Titi and Matiu/Somes Islands. As mainland fenced reserves are becoming more 
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common in New Zealand, the number of tuatara reintroductions is expected to increase, 

and it is likely that founder groups will be comprised of ~30 adults for most of these 

reintroductions (P Gaze, pers. comm.). Thirty juveniles is a similar founder group as some 

reintroductions of captive-bred/reared populations. For each founder group, we ran 

three separate simulations with different levels of male reproductive skew (70%, 50%, or 

0%). Ages of adult founders were chosen based on a stable age distribution. The age of 

all juvenile founders was set to five years (the age at which captive-reared tuatara are 

generally released). 

 

To more thoroughly assess the effects of male reproductive skew, we ran 10 models of a 

reintroduction of 30 adult tuatara from both low- (North Brother Island) and high-

diversity (Stephens Island) source populations. In each model, we specified a different 

level of male reproductive skew. We ran eight density-independent models (0-70% 

reproductive skew, at 10% increments) and two density-dependent models. 

Reproductive skew (RN) at a given population size (N) was directly proportional to 

population density in the latter models, where 

( ) ( )[ ]KNRRRR LHLN /∗−+=  

and RH is the reproductive skew at high density, RL is the reproductive skew at low 

density, and K is the carrying capacity. In the first of these models, we used 20% 

reproductive skew at low density and 70% at high density (i.e. RL = 20 and RH = 70). In the 

second density-dependent model, we used 0% reproductive skew at low density and 

50% at high density (i.e. RL = 0 and RH = 50). We based these values on data from captivity 

and Stephens Island (respectively), where reproductive skew is 25% at low density 

(Moore et al. 2008) and 70% at high density (Moore et al. in review). To make 

comparisons with the density-independent models, we used 20% skew at low density 

rather than 25%. As data from captivity and Stephens Island were collected over 15 and 3 

years, respectively, and may overestimate reproductive skew over the lifespan of a 

tuatara, we used the more conservative estimates in the second density-dependent 

model. 

 

5.4 Results 

 

Expected heterozygosity per locus ranged from 0.071 to 0.497 (mean = 0.406) on North 

Brother Island and from 0.730 to 0.927 (mean 0.782) on Stephens Island. Following 

Bonferroni correction, only one locus (H5V) deviated significantly from HWE in the North 
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Brother and Stephens Island populations, but it was included in models of allelic 

diversity. Mean allelic diversity was 14.4 on Stephens Island and 2.3 on North Brother 

Island. 

 

The proportion of alleles retained in each founder group ranged from 84.2% to 100%, 

and was within 2% of the predicted values (Figure 5.2, Table 5.2). Groups of 30 founders 

from Stephens Island were predicted to retain only 70.9% of the allelic diversity of the 

source, but 30 founders from North Brother Island were expected to retain 99.2% of the 

allelic diversity on North Brother. Founder groups of 30-200 individuals represent 

between 98.3 and 99.8% of the original heterozygosity (Table 5.2). 

 

 

Figure 5.2 Comparison between the predicted loss of alleles with different founder 
group sizes, based on allele frequencies in high-diversity (Stephens Island, solid line) and 
low-diversity (North Brother Island, broken line) populations. The actual proportion of 
alleles retained in the reintroduced populations of tuatara are indicated with circles.  The 
number of tuatara reintroduced is indicated in brackets. 
 

Populations with larger founder groups retained more h and A after 10 generations for 

both high- and low-diversity source populations (Table 5.2). Further, populations with 

more founders retained a greater proportion of the h and A of the founders. For example, 

populations founded with 200 adults from the high-diversity source population 

(Stephens Island) with 50% reproductive skew would retain 98.8% h and 83.2% A of the 

source (corresponding to a loss of 1.0% h and 11.2% A from the founder group), but a 

population founded with only 30 adults would retain 92.4% h and 52.4% A of the source 

population (a loss of 5.9% h and 18.5% A from the founders). Populations founded with 

30 juveniles retained less h and A over 10 generations than those founded with 30 adults. 
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Losses of allelic diversity from populations with low-diversity sources were small (6.5%) 

under even the most extreme conditions (30 juvenile founders, 70% reproductive skew). 

On the other hand, populations with high-diversity sources lost at least 13.2% of alleles 

even under scenarios that promote retention of allelic diversity (200 adult founders, 0% 

reproductive skew, Table 5.2). Probabilities of extinction were 0% for all populations 

founded with 30, 70, or 200 adults. The probability of extinction was 0.4-4.8% for 

populations founded with 30 juveniles.  

 

Table 5.2 Proportion of source heterozygosity (h) and allelic diversity (A) retained in 
founder groups of different sizes and composition (J = juveniles, Ad = adults) and 10 
generations after reintroduction. Three levels of reproductive skew (70%, 50%, and 0%) 
were modelled for each founder group. Allelic diversity was 14.4 in the high-diversity 
source population (representing Stephens Island) and 2.3 in the low-diversity source 
population (representing North Brother Island). 
 

  High-diversity source  Low-diversity source 
   10 generations   10 generations 

  
Founders 

 70 50 0  
Founders 

 70 50 0 

30J .983  .860 .906 .937  .983  .856 .900 .934 
30Ad .983  .883 .924 .949  .983  .875 .918 .945 
70Ad .993  .952 .967 .978  .993  .944 .961 .974 

h 

200Ad .998  .982 .988 .992  .998  .972 .980 .986 
             

30J .709  .431 .485 .548  .992  .935 .955 .972 
30Ad .709  .466 .524 .593  .992  .948 .962 .981 
70Ad .843  .639 .686 .747  1.00  .984 .990 .997 

A 

200Ad .944  .798 .832 .868  1.00  .997 .999 1.00 

 

Greater male reproductive skew led to significant losses of h and A after 10 generations 

(Table 5.3). The loss of h was between 0.2% and 2.9% greater with each 10% increase in 

reproductive skew (i.e. with 10% more males excluded from mating), and was minimal 

after population size exceeded ~250 animals. The effect of reproductive skew on h was 

slightly more severe when carrying capacity was smaller (Table 5.3). Reproductive skew 

had a greater effect on the loss of alleles in the high-diversity populations (Table 5.3). The 

loss of A was 0.7-3.7% with each 10% increase in reproductive skew in the high-diversity 

populations, but 0.1-1.4% in the low-diversity populations. Populations founded with 30 

adults from a high-diversity source population retained between 46.6% and 59.1% of the 

source A, depending on the degree of reproductive skew (Table 5.3). 

 

The losses of h and A in density-dependent models were similar to, but slightly greater 

than losses predicted by the percentage of males mating at low density (Table 5.3).  For 
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example, with 20% reproductive skew at low density and 70% at high density, 

populations retained similar levels of h and A after 10 generations as predicted by 

density-independent models with 20-30% reproductive skew. 

 

Table 5.3 Predicted proportion of source heterozygosity (h) and allelic diversity (A) 
retained 10 generations after reintroduction of 30 adult tuatara with different levels of 
male reproductive skew. The percentage of males excluded from mating (0-70%) was 
varied under density-independent and density-dependent models. Allelic diversity was 
14.4 in the high-diversity source population (representing Stephens Island) and 2.3 in the 
low-diversity source population (representing North Brother Island). Differences in values 
of h between high- and low- diversity source result from differences in carrying capacities 
used in the models. 
 

 High-diversity source  Low-diversity source 

 h A  h A 

Density-independent      
70 .883 .466  .875 .948 
60 .911 .503  .904 .960 
50 .924 .524  .918 .962 
40 .932 .543  .927 .968 
30 .938 .561  .934 .973 
20 .943 .574  .939 .977 
10 .947 .584  .942 .979 
0 .949 .593  .945 .981 
      

Density-dependent      
201/702 .942 .571  .934 .972 
01/502 .949 .593  .942 .977 

1 proportion of males excluded from mating at low density 
2 proportion of males excluded from mating at high density  

 

5.5 Discussion 

 

Reintroduced populations of tuatara should retain a relatively high proportion of the 

heterozygosity (86-99%) and allelic diversity (43-100%) of their source populations after 

10 generations. Founder groups released into Karori Wildlife Sanctuary, Titi Island, and 

Matiu/Somes Island have retained 84-100% allelic diversity of their source populations. 

Genetic diversity of the source populations affects the retention of diversity in the 

founders, with populations reintroduced from high-diversity sources (Stephens Island) 

losing more diversity than those from low-diversity sources (North Brother Island). As 

expected, larger founder groups increase the proportion of heterozygosity and allelic 

diversity of both the source populations and the founder groups retained after 10 

generations. Greater male reproductive skew led to greater losses of heterozygosity and 
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allelic diversity over 10 generations, but the effect of reproductive skew was minimal 

after the populations expanded to > 250 animals. 

 

5.5.1 Losses of genetic diversity 
 

It is generally agreed that the more heterozygosity retained, the better (Franklin & 

Frankham 1998; Lynch & Lande 1998), but cited goals for genetic management of 

threatened species are typically ~90-95% heterozygosity retained over 100-200 years 

(Soulé et al. 1986; Lacy 1987; Allendorf & Ryman 2002). As tuatara are extremely long-

lived (possibly 100 years, Dawbin 1982; Cree 1994) with a long generation interval, 

targets for genetic management in reintroduced populations over 100 years have little 

meaning. However, we applied these targets (90-95% heterozygosity) to tuatara over 10 

generations.  

 

The rate of population expansion has a large effect on how well genetic diversity is 

maintained, and factors that increase population growth rates will help to maintain 

genetic diversity (Chapter 4). After reintroduction, several factors may result in greater 

population growth rates. Release from competition results in higher body condition and 

increases in body size (Nelson et al. 2002a; McKenzie 2007). Female tuatara in better body 

condition may reproduce more frequently, and those with larger body size produce more 

eggs per clutch (Newman et al. 1994). Females in captivity, where resources are not 

limited, reproduce on average every two years (Moore et al. 2008). Additionally, at low 

density, the top predator of juveniles (adult tuatara) will be sparse, and juvenile survival 

may be higher. Under these conditions, the loss of heterozygosity and allelic diversity 

may be lower than predicted. 

 

Genetic drift in small populations generally outweighs selection at functional loci (e.g. 

MHC, Miller & Lambert 2004; Campos et al. 2006, but see Aguilar et al. 2004). In tuatara, 

the loss of genetic variation at MHC loci after a bottleneck is comparable to that lost at 

neutral loci (Miller et al. 2008). Although models of neutral genetic variation may have 

limited ability to predict the effects of a bottleneck on quantitative (polygenic) variation 

(Reed & Frankham 2001), they can be used to evaluate how well adaptive variation (at 

least at MHC loci) may be maintained after reintroduction. The loss of genetic variation at 

these fitness-related genes may reduce the ability of the populations to respond to novel 

disease threats and increase the risk of an epidemic causing a population crash. 
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5.5.2 Choice of source population 
 

Populations reintroduced from North Brother Island would retain a larger proportion of 

the allelic diversity of the source than populations reintroduced from Stephens Island. 

However, this does not indicate that reintroduced populations from Stephens Island 

would have less adaptive potential. In fact, even when 50% of the original allelic diversity 

from Stephens Island is lost during reintroduction, it is higher than that on North Brother 

Island. Our results suggest that reintroductions from North Brother Island will lose little 

allelic diversity.  

 

The assumption of no background inbreeding (i.e. all founders being unrelated) may be 

unrealistic, particularly for populations reintroduced from North Brother Island, which has 

a history of population bottlenecks and small population size (Newman 1877; Nelson et 

al. 2002b). We ignored inbreeding depression in our models, as it had relatively little 

impact on the amount of heterozygosity retained after 10 generations, but inbreeding 

(particularly when only a few founders are reintroduced) could affect individual fitness 

and may reduce population growth rates (Briskie & Mackintosh 2004; Taylor et al. 2005). If 

deleterious alleles have been purged on North Brother Island because of its history of 

small population size and bottlenecks, then populations reintroduced from North Brother 

Island would be less affected by the increase in inbreeding than a population 

reintroduced from Stephens Island. However, purging is unlikely to reduce the negative 

effects of inbreeding (Ballou 1997; Frankham 2001), particularly when deleterious alleles 

have small rather than lethal effects (Hedrick 1994). Thus, it is likely that populations 

reintroduced from North Brother Island would be equally vulnerable to the potential 

effects of inbreeding. However, there are currently no known effects of inbreeding 

depression in this population (Mitchell et al. in review). 

 

5.5.3 Founder group size and composition 
 

Larger founder groups will help to maximise genetic diversity, reduce inbreeding, and 

maintain genetic diversity across generations. However, few founders are often released 

during reintroductions. For example, 46% of reintroductions of birds and mammals 

carried out between 1978 and 1986 had fewer than 30 founders (Griffith et al. 1989). 

Although the median number of founders increased subsequently to ~50 founders by 

1993 (Wolf et al. 1996), founder groups are often still much smaller than 50, particularly 
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for threatened species (e.g. Fitzsimmons et al. 1997; Towns & Ferreira 2001). It has been 

suggested that ~100 founders would be needed to maximise the probability of success 

(Griffith et al. 1989), but species with high population growth rates may have a negligible 

probability of extinction through demographic stochasticity after reintroduction of as 

few as four animals (e.g. saddlebacks, Philesturnus caruncuatus, Taylor et al. 2005). 

Similarly, our models showed a negligible probability of extinction with at least 30 adult 

founders. 

 

Captive-reared juveniles are often used as founders for reintroduced populations (Griffith 

et al. 1989), and it is often possible to release more captive-reared juveniles than wild 

founders without damaging the source populations. These juveniles are often related 

clutch-mates, which may accelerate inbreeding after reintroduction, but the harvest of an 

equivalent number of wild juveniles may be unfeasible for many cryptic species. 

Although head-started juveniles remain in captivity during the period of highest 

mortality (e.g. until age five for tuatara), survival of juveniles is lower than adults. 

Therefore, the release of juvenile founders would result in greater losses of genetic 

diversity than release of the same number of adults, because juvenile mortality effectively 

results in fewer founders. Additionally, reintroductions of juveniles have slightly higher 

probabilities of extinction (Nelson 1998; this study). 

 

5.5.4 Reproductive skew 
 

High variance in male reproductive success, where few males obtain almost all of the 

matings in a population, results in low effective population size (Nunney 1993; Parker & 

Waite 1997). However, the effect of reproductive skew is difficult to quantify in species 

with overlapping generations. Our models showed that reproductive skew had relatively 

little impact on the loss of genetic diversity while population size was large. However, 

when population size is reduced (e.g. after reintroduction), reproductive skew has a 

significant impact on how well genetic diversity is maintained despite a long generation 

interval. 

 

Differences in fitness due to unequal mating success is the basis of sexual selection, and 

is common in natural populations (Emlen & Oring 1977). Thus, reproductive skew per se is 

not detrimental. However, following reintroduction, it may have a large influence on 

whether the genetic goals for management are met. Density-dependent changes in 
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reproductive skew, where more males mate at low density, may facilitate the 

maintenance of genetic diversity in the early stages of population growth after 

reintroduction. Even if reproductive skew is high and density-independent, larger 

founder groups could be released to achieve genetic goals for management. Although it 

is possible to intentionally bias founder sex-ratios to account for reproductive skew (Lenz 

et al. 2007), it will not always be possible to determine which males might be successful, 

particularly if more males mate at low density or there are multiple determinants of male 

reproductive success (e.g. body size and colouration, Stapley & Keogh 2006). For species 

with strong social structure where subordinate males may be entirely eliminated from 

mating, understanding how density influences social structure will be critical for 

understanding how genetic diversity is maintained and thus how reintroduction will 

impact population viability. 

 



 

CHAPTER SIX 
 

Managing genetic diversity in reintroduced populations: 

Thesis summary and applications 
 

 

6.1 Introduction 

 

The loss of genetic diversity in a small reintroduced population could reduce the 

probability of establishment and persistence. Effective management of genetic diversity 

is thus important for the short- and long-term success of reintroduced populations. Using 

both empirical data and population modelling, I investigated factors that influence 

inbreeding dynamics and the retention of genetic diversity in translocated populations, 

and demonstrated the difficulty in applying that information for severely threatened 

species. Several features of species biology, including reproductive output, background 

inbreeding, and the mating system, may contribute to the maintenance or reduction of 

genetic diversity. Decisions on the design (e.g. the source population and composition of 

the founder group) and ongoing management (e.g. supplementation or serial 

translocation) of reintroduced populations also affect genetic diversity in the long-term. 

Patterns of genetic diversity among populations can be used to evaluate options for 

hybridising populations for reintroduction, which may provide a means of offsetting high 

background levels of inbreeding. Because understanding the effects that management 

actions have on genetic diversity is a priority for individual species recovery and the 

broader field of reintroduction biology (Towns 1999; Armstrong & Seddon 2008), the 

results of this thesis addressed questions fundamental to conservation. Further, these 

results can be used to improve translocation planning and develop future research into 

how inbreeding may interact with demography and stochastic events to influence the 

risk of extinction after reintroduction. 

 

6.2 Summary of findings 

 

The main findings from each of the four data chapters (Chapters 2-6) are summarised 

below: 
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6.2.1 Assessing genetic diversity for conservation management: a case study of a 
threatened reptile (Chapter Two) 
 

Populations are often managed separately to avoid irreversibly mixing genetic lineages 

and to maintain the historic integrity of each population. Three remaining populations of 

Whitaker’s skink (Cyclodina whitakeri), remnants of a once wider distribution, illustrate the 

conflict between this genetic goal with the more tangible and immediate threats of small 

population size and inbreeding. Populations of C. whitakeri from opposite ends of the 

species’ range show marked differences at both mtDNA and microsatellite loci. However, 

this pattern is most likely an artefact of an historic genetic gradient coupled with rapid 

genetic drift. Animals in captivity show genetic signatures of both Pukerua Bay and island 

populations, despite the goal to maintain a pure Pukerua Bay stock for use as founders of 

a reintroduction. This mixed genetic stock provides an opportunity for the addition of 

skinks from Middle Island to the captive programme to evaluate the risks of further 

population hybridisation, while mitigating the risks of inbreeding. 

 

6.2.2 Genetic structure and individual fitness following translocation of a small lizard 
(Chapter Three) 
 

Translocation of pregnant females has been proposed as a means of maximising 

productivity and genetic diversity, but it is unclear whether the release of pregnant 

females reduces the genetic bottleneck and increases the effective population size. 

Fourteen years after reintroduction of 20 gravid females and 10 males, the population of 

Oligosoma suteri on Korapuki Island showed multiple genetic signatures of a bottleneck 

that were not detected in the source population on Green Island. However, the 

population on Korapuki Island has a significantly larger effective population size than 

would have been expected by translocation of 30 skinks. The translocation of gravid 

females aided in increasing the effective number of founders, indicating that it is a viable 

option for maximizing genetic diversity in translocated populations. No evidence of 

inbreeding depression is detectable using two performance-based surrogates of fitness. 

However, juvenile skinks on Korapuki Island are more homozygous than adults on 

Korapuki and Green Islands, indicating that juveniles with high homozygosity may not 

survive into adulthood. The continued loss of genetic variation and the loss of adaptive 

potential after reintroduction could not be assessed in the short-term. 
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6.2.3 The effects of supplementation and serial translocation on genetic diversity in 
species with varied life histories (Chapter Four) 
 

Maintaining genetic variation during the founding event is important for the success of 

translocated populations, but genetic drift and management actions may cause losses of 

genetic diversity after translocation. Three species of skinks with different life histories 

were translocated to Korapuki Island between 1988 and 1992. We sampled source and 

translocated populations of each species to assess the genetic consequences of 

translocation, and modelled genetic diversity over 10 generations to evaluate the 

implications of plausible management techniques. Translocation caused losses of 

heterozygosity and allelic diversity in all three species, but in the 14-18 years following 

translocation, the species with the lowest reproductive output (C. whitakeri) retained less 

heterozygosity than predicted by models. The species with the highest output (O. suteri) 

retained more than predicted. Supplementation of the translocated populations with 30 

additional animals would not reduce the loss of heterozygosity over 10 generations in O. 

suteri, but would for species with lower reproductive output (C. whitakeri and C. alani) by 

decreasing the time required to reach carrying capacity. Harvest of C. whitakeri from 

Korapuki Island for a second-order translocation would accelerate the loss of 

heterozygosity after 10 generations in both the first- and second-order translocations. 

Therefore, supplementation of translocated populations will have the greatest effect 

during the period of population growth, as new animals will aid in rapid recovery from a 

bottleneck. Further, actions that slow population growth (e.g. harvesting from a relatively 

small population) should be avoided. 

 

6.2.4 How do reproductive skew and founder group size affect genetic diversity in 
reintroduced populations? (Chapter Five) 
 

Mating success is often unequal among individuals, which can lead to reduced effective 

population sizes. Using three reintroduced populations of tuatara (Sphenodon spp.), we 

evaluated how founder group size and variance in male reproductive success influence 

the long-term maintenance of genetic diversity after reintroduction. Reintroduced 

populations of tuatara should retain a relatively high proportion of the heterozygosity 

(85-99%) and allelic diversity (43-100%) of their source populations after 10 generations. 

The amount of genetic diversity in the source populations affects the retention of 

diversity in the founder group, with populations reintroduced from high diversity sources 

(e.g. Stephens Island) losing more diversity than those from low diversity sources (e.g. 
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North Brother Island). Populations founded with more animals retain a greater proportion 

of the heterozygosity and allelic diversity of both their source populations and founder 

groups. Greater male reproductive skew leads to greater losses of genetic diversity over 

10 generations, but reproductive skew only accelerates the loss of genetic diversity at 

small population size. Therefore, a reduction in reproductive skew at low density would 

facilitate the maintenance of genetic diversity in reintroduced populations. Even when 

reproductive skew is high and density-independent, larger founder groups could be 

released to achieve genetic goals for management.  

 

6.3 Implications for conservation management 

 

The results of this thesis can be applied toward conservation management of the specific 

populations studied and during the design of future reintroductions of any species. As 

reintroduction is one of the most commonly used tools in New Zealand conservation 

(Armstrong & McLean 1995), and the number carried out annually is likely to increase 

(Saunders 1995), improving the maintenance of genetic diversity in reintroduced 

populations should be an important component of long-term management strategies. 

Effective management of genetic diversity must be considered in both the initial design 

and ongoing management of reintroduced populations. 

 

6.3.1 Minimising the initial genetic bottleneck 
 

Releasing gravid females would increase the effective population size after reintroduction 

(Chapter 3), despite concerns that stress during translocation may skew offspring sex 

ratios (e.g. Linklater 2007). Additionally, intentionally biasing the founder sex ratio 

towards females may help to preserve genetic diversity by increasing population growth 

rates (Lenz et al. 2007; Chapter 4). However, the population dynamics of the source must 

be carefully considered. Removal of a relatively large number of gravid females may not 

affect a large source population, but it could have detrimental demographic and genetic 

consequences on a small or recovering source population (e.g. the population of C. 

whitakeri on Korapuki Island or C. alani on Green Island, Chapter 4). Similarly, removal of a 

large number of females from an already male-biased population (e.g. tuatara on North 

Brother Island, Nelson et al. 2002b) could have devastating consequences for the source. 

These potential outcomes emphasize the need for extensive population surveys of the 

proposed sources prior to translocation. Particularly when reintroductions are carried out 
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for the conservation management of threatened species, no source population should be 

harmed either demographically or genetically by the removal of animals for translocation 

(Marshall & Spalton 2000). 

 

Reproductive skew immediately after reintroduction reduces the amount of genetic 

diversity retained over 10 generations (Chapter Five). Knowing that variance in male 

reproductive success has long-term consequences will enable managers to be more 

selective about male founders during the translocation of highly polygynous species. 

During reintroduction of tuatara, for example, it may be advantageous to select males of 

similar body size in order to reduce high reproductive skew when the population is small 

and growing. However, density-dependent changes in the mating system, where more 

males mate at lower density (Kokko & Rankin 2006; Moore et al. in review), may serve to 

equalise the genetic contributions of differently-sized males while populations are still 

small after reintroduction. Further, male tuatara grow rapidly in body size and condition 

after translocation (Nelson et al. 2002a), making the effects of translocating similarly-sized 

males difficult to predict. Research into how density influences social structure will be 

critical for understanding and predicting how reintroduction will impact population 

viability (see section 6.4.3). 

 

6.3.2 Maximising the retention of genetic diversity 
 

Although founder groups of 30 animals are adequate for reaching genetic goals for 

management of species with high reproductive output (e.g. O. suteri, Chapter 4), larger 

founder groups are required for species with lower reproductive output and/or low 

survival after release (e.g. C. whitakeri, Chapter 4). Further, because of low population 

growth rates, populations of C. whitakeri lose large amounts of genetic diversity in the 10 

generations following release (Chapter 4). 

 

Ongoing management of reintroduced populations should include monitoring and 

management for genetic diversity. For example, populations of C. whitakeri and C. alani 

on Korapuki Island show markedly lower genetic diversity than expected 14-18 years after 

release and have small effective population sizes, which resulted from low survivorship (C. 

whitakeri) and a small release group (C. alani). Supplementation with additional animals 

from Middle Island to account for the small effective population sizes would increase 

genetic diversity, reduce inbreeding, and increase population growth rates (Chapter 4). 
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Although negative consequences of inbreeding have not been noted in either 

population, it is clear that inbreeding has detrimental effects on individuals (e.g. Madsen 

et al. 1996; Coulson et al. 1999; Jamieson et al. 2007). Supplementation of C. alani on 

Korapuki Island would require hybridising populations, because the removal of skinks 

from Green Island (the source) most likely had negative demographic consequences for 

that small population. However, supplementation with C. alani from Middle Island would 

mimic the historic connectivity between the two island populations (Chapter 4). The 

proposed serial translocations of C. whitakeri and C. alani from Korapuki Island should not 

be carried out without first supplementing these populations and allowing them to 

recover. However, serial translocations of O. suteri may be feasible in the near future 

(Chapter 4). 

 

6.3.3 Management of highly inbred populations 
 

Many species and populations of strong conservation concern have high levels of 

background inbreeding (Madsen et al. 1996; Westemeier et al. 1998; Pimm et al. 2006). 

The small, declining population of C. whitakeri from Pukerua Bay is a clear case where the 

wild population has low genetic diversity and a history of inbreeding (Chapter 2). 

Inbreeding has been further accentuated in a captive population founded by just three 

wild animals. As 18 of the 21 animals in captivity are offspring of the captive breeding 

programme, most are full siblings (Chapter 2). Although a reintroduction from captivity to 

the wild poses the best option for management, up to 50 wild founders may be required 

to account for low rates of survival after release and low intrinsic rates of population 

growth (Towns & Ferreira 2001; Chapter 4). 

 

A translocation of C. whitakeri from Pukerua Bay has many challenging aspects. As many 

wild animals as possible should be represented in the founder group, but it would be best 

to release F1 offspring of the wild founders, rather than the wild animals themselves, so 

as to retain the wild animals in captivity and increase genetic variability in the breeding 

stock. The founder group for release should be comprised of as few full siblings as 

possible. As three additional animals have recently been caught at Pukerua Bay1, it may 

 

                                                 

 
1 Three animals were caught by the Department of Conservation in December 2008, after 
publication of Chapter 2. They all share an mtDNA haplotype with all Pukerua Bay animals, and 
their microsatellite genotypes support the results presented in Chapter 2 (KA Miller, unpubl. data) 
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become feasible to minimise the number of full-siblings in the founder group after ~10 

years of captive breeding with a carefully designed breeding programme. The requisite 

number of wild founders could be obtained from Middle Island (Chapter 2), but the 

relative contribution of Middle Island animals to the founder group for reintroduction 

should be small (i.e. < 25%), as very few animals are generally needed to restore genetic 

diversity and reduce the effects of inbreeding. For example, the release of only eight 

Texas panthers (Puma concolor stanleyana) into an inbred population of < 100 Florida 

panthers (P. c. coryi) was sufficient to increase female reproductive output and kitten 

survival by up to 300% (Pimm et al. 2006). Further, intensive demographic and genetic 

monitoring after reintroduction should be high priorities for management. 

 

6.4 Future directions for research 

 

Although this thesis answers many questions regarding maximising genetic diversity in 

founder groups and the factors that may influence the maintenance of that diversity, it 

also presents several new questions. The research presented here provides a basis for 

further investigation on the ecological and genetic factors that influence population 

success after reintroduction. Further, it provides a foundation for the development of 

more complex models of losses of genetic diversity after translocation and how genetic 

drift may affect the long-term persistence of these valuable populations. 

 

6.4.1 Are the losses of genetic diversity consistent across reintroduced populations? 
 

A multitude of factors will influence the amount of genetic diversity retained in a 

reintroduced population in both the short- and long-term (Chapters 3-5), including the 

stochastic natures of population growth and inheritance. Therefore, it is important to 

understand how ecological factors and natural variation may influence the maintenance 

of genetic diversity. Several reintroductions of C. alani and C. whitakeri have been carried 

out within the Mercury Island group (both species were translocated to Korapuki, Stanley, 

and Red Mercury Islands). The closely monitored reintroduced populations on Korapuki 

Island clearly show losses of genetic diversity, and species with lower reproductive output 

show greater losses (Chapter 4). The other reintroduced populations were all founded 

with 30 animals, and provide an important comparison. Translocations of one species are 

often founded by different numbers of individuals. For example, reintroduced 

populations of North Island saddlebacks (Philesturnus carunculatus rufusater) were 
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founded by 22-172 individuals (Lambert et al. 2005). By measuring the losses of genetic 

diversity in the reintroduced skink populations on Stanley and Red Mercury Islands 

founded with the same number of individuals, it may be possible to investigate how 

variation in survival and inheritance due to ecological and other factors affect the 

maintenance of diversity. Further, in species that are not severely threatened (e.g. O. 

suteri), translocations may be designed to experimentally test predictions about a loss of 

genetic diversity (Seddon et al. 2007). For example, reintroductions of O. suteri could be 

designed to experimentally test whether releasing gravid females always increases 

population growth rates and effective population size (Chapter 3). 

 

6.4.2 How is inbreeding depression manifested in reptiles? 
 

Inbreeding may have a variety of consequences for individuals and populations (Chapter 

1), but can be difficult to detect in cryptic species, including many reptiles (Chapter 3). 

Developmental anomalies have occasionally been associated with inbreeding in reptiles 

(Schwaner 1990; Sarre & Dearn 1991; Madsen et al. 1996; Gautschi et al. 2002), but more 

direct links between inbreeding and  fitness have been noted less often (but see Madsen 

et al. 1996). Developmental stability, an individual’s ability to withstand genetic and 

environmental perturbations, has been used as an indirect estimate of fitness (Leary et al. 

1984). Anomalies are often associated with high homozygosity (Soulé 1979), and may be 

related to poor locomotor performance and survival of garter snakes (Thamnophis spp., 

Arnold & Bennett 1988; Jayne & Bennett 1990), but whether this relationship holds true 

across species is unclear. A better understanding of the links between developmental 

anomalies and biological fitness would reveal whether anomalies could be used to 

measure losses of fitness in populations. For cryptic species, using morphological 

measurements to infer inbreeding depression would be more feasible than measuring 

biological fitness. Oligosoma suteri would be an ideal candidate for such studies, as 

fluctuating asymmetry, or the deviation from bilateral symmetry, is unrelated to 

developmental stress and may be related to underlying genetic effects (Longson 2004). 

By combining genetic, morphological, and performance data, a link with fluctuating 

asymmetry may be uncovered. Further, an extensive genetic mark-recapture study of O. 

suteri on Korapuki Island (using genetic data from Chapter 3) would reveal whether either 

inbreeding and/or speed predict survival. 
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6.4.3 How do density-dependent factors operate after reintroduction?  
 

Many aspects of species biology are influenced by resource availability and population 

density (Kokko & Rankin 2006), which in turn affect genetic diversity (Chapter 5). A more 

thorough understanding of the influence of these factors after reintroduction is critical in 

creating accurate models to predict population growth and extinction risk. For example, 

female tuatara may have greater reproductive output after reintroduction as a result of 

increased body condition or size (Nelson et al. 2002a), and more male tuatara may mate 

at lower density (Moore et al. in review). Further, hatching success and recruitment rates 

may be higher at lower density, as conspecific nest destruction and predation rates may 

be reduced. Although challenging, understanding how quickly and by how much 

reproductive output increases, how the mating system changes, and how recruitment 

rates change with density would provide much needed data for modelling population 

growth rates after reintroduction. 

 

6.4.4 How do demography and inbreeding interact to influence population 
persistence? 
 

The loss of genetic diversity combined with inbreeding depression in a small 

reintroduced population could reduce the probabilities of establishment and persistence 

(Armstrong & Seddon 2008). Making predictions about this relationship requires 

estimating the effects of inbreeding depression and making projections about the 

severity of future threats. The probability of extinction may be negligible in a species with 

a high finite rate of population growth, even when egg failure rates are tripled because of 

inbreeding (e.g. saddlebacks, P. carunculatus, Taylor et al. 2005). However, extinction risk 

may be greatly influenced by inbreeding depression in species with lower reproductive 

output (Chapter 4) or high reproductive skew (Chapter 5), because of rapid increases in 

inbreeding. Using population modelling, links between inbreeding and the probability of 

population establishment could be clarified. Species with differing life histories (e.g. C. 

alani, C. whitakeri, and O. suteri, Chapter 4) and polygynous mating systems (e.g. tuatara, 

Chapter 5) provide the appropriate contrasts needed for such investigations. The 

insidious consequences of a loss of adaptive potential may have a large effect on the 

long-term persistence of these populations (Frankham 1999; Spielman et al. 2004). For 

example, incorporating novel disease threats in population models would allow a more 

thorough investigation of the long-term effect of the loss of genetic variation at 

functional loci (e.g. MHC genes).  
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6.5 Summary 

 

In summary, the commonly proposed founder group of 30 animals should result in 

reintroduced populations with high genetic diversity for species with high finite rates of 

population growth (Chapters 3-4). However, many reptile reintroductions in New Zealand 

fall short of this target (TP Bell, JM Germano, and KA Miller, unpubl. data). When fewer 

founders are released (e.g. C. alani on Korapuki Island), or when founder survival is low 

(e.g. C. whitakeri on Korapuki Island), genetic diversity in reintroduced populations is likely 

to fall well below the genetic targets for management (Chapter 4). Founder groups 

should therefore be larger for reintroductions of species with low reproductive output 

(Chapter 4), high mortality rates after release (Chapter 4), highly polygynous mating 

systems (Chapter 5), and high levels of background inbreeding (Chapters 2, 5). However, 

these species are also likely to be of greater conservation concern (Towns & Ferreira 2001; 

Chapter 4), and fewer animals may be available for translocation. Ongoing genetic 

monitoring will be essential in the management of these populations. 
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APPENDIX ONE 
 

Alternate escape strategies may provide a means of 

compensation for poor performance ability 
 

 

A1.1 Abstract 

 

Performance abilities can facilitate predator avoidance and consequently influence 

fitness, but determining the functional significance of any one antipredation tactic is 

difficult without understanding how alternate predator escape strategies relate. Maximal 

sprint speed and dive duration were measured in the semi-aquatic skink Oligosoma suteri 

to determine how morphology and behaviour influence these alternate predator escape 

mechanisms and the relationship between the two measures. Gravid females and 

juveniles ran significantly slower, but had equivalent or longer dive durations than males 

and non-gravid females. The two performance measures were not influenced by the 

same morphological and behavioural traits, and were not correlated among individuals, 

suggesting that the underlying traits that influence these performance capacities are 

unrelated. Although selection on sprint speed is likely mediated by predators, individuals 

that are poor sprinters because of their state (e.g. gravid individuals or those with tail loss) 

may have a greater likelihood of successful escape by adopting an alternate escape 

strategy. The use of alternate escape strategies may make it difficult to quantify selection 

on any one performance trait. 

 

A1.2 Introduction 

 

Whole-animal performance is influenced by a suite of underlying morphological, 

physiological, and behavioural traits (Arnold, 1983), and identifying which of these traits 

influence performance is essential in understanding phenotypic evolution. Selection may 

act directly on ecologically relevant abilities or on behavioural variations that influence 

performance (Arnold, 1983). Such organismal performance measures include swimming 

acceleration in fish (Ghalambor et al., 2004), flight speed in insects (Srygley & Dudley, 

1993) and birds (Veasey et al., 1998), and sprint speed in mammals (Iriarte-Diaz, 2002) and 

reptiles (Husak, 2006a). Selection on whole-animal performance is typically directional 

and has been quantified in several studies (see Irschick et al., 2008 for review). 
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 Performance ability can facilitate predator avoidance and consequently influence fitness 

(Lind & Cresswell, 2005; Husak et al., 2006; Irschick et al., 2007; Irschick et al., 2008), yet 

animals may use several different strategies for the same function. For example, skylarks 

(Alauda arvensis) use song, refuge-seeking, and flocking to avoid predation, but the 

optimal escape option depends on body condition (Cresswell, 1994). Despite a species’ 

potential use of multiple tactics, very few studies examine multiple, and very different, 

performance traits with the aim of understanding how selection on one may influence 

the other (but see Chapple & Swain, 2002). 

 

Determining the functional significance of the factors influencing any one antipredation 

tactic is difficult without understanding how alternate predator escape strategies relate 

(Lind & Cresswell, 2005). If the same factors influence alternate tactics in a similar way, 

then individuals that perform well at one measure would perform well at both. 

Conversely, if the same factors influence alternate performance antagonistically, then 

individuals that perform well at one measure would perform poorly at the other. Finally, 

alternate measures may be influenced by entirely different underlying factors, or by 

different interactions of numerous factors, so that performance measures are not 

correlated, either phenotypically or genetically. As individuals often use multiple escape 

strategies under different conditions (e.g. Stapley & Keogh, 2004), it may be difficult to 

resolve the influence of performance ability on fitness. 

 

Physical or physiological factors may underlie trade-offs between performance and 

fecundity. For example, predation pressure favours increased swimming performance of 

Trinidadian guppies (Poecilia reticulate, in acceleration, speed, and travel distance) and 

simultaneously triggers an adaptive increase in reproductive allocation (% body weight 

comprised of developing embryos). However, increased reproductive allocation 

concurrently reduces swimming performance, so that increased fecundity comes at a cost 

to escape performance (Ghalambor et al., 2004). Physical burdening of males by injection 

of a sterile fluid into the body cavity can reduce speed to an equivalent degree as 

gravidity in female garden skinks (Lampropholis guichenoti; Shine, 2003). Conversely, 

Olsson et al. (2000) found that the physiological burden of pregnancy (rather than 

physical burdening) reduces speed in pregnant snow skinks (Niveoscincus microlepidotus). 

Maternal speed is unrelated to litter mass, and non-pregnant females equivalent in mass 

to pregnant females run faster (Olsson et al., 2000). 
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Sprint speed is perhaps the most commonly studied measure of locomotor performance 

in lizards (Van Damme & Vanhooydonck, 2001); it is repeatable both across temperatures 

and between years (Huey & Dunham, 1987), yet many morphological attributes, such as 

larger body size, tail length, and limb length, are positively correlated with speed. Speed 

influences biological fitness because of key roles in foraging, social interactions, and 

predator escape (Greenwald, 1974; Christian & Tracy, 1981; Garland et al., 1990). However, 

as individuals in the field run faster when escaping a predator than when foraging (Husak, 

2006b) and faster animals are more likely to survive attack than slower animals (Jayne & 

Bennett, 1990; Warner & Andrews, 2002; Husak, 2006a), speed when escaping is the more 

likely target of selection. Further, male collared lizards (Crotaphytus collaris) with faster 

maximum sprint speeds have larger territories and sire more offspring than slower males 

(Husak et al., 2006). 

 

Many lizards also dive into water and submerge or swim as a means of predator escape 

(Pianka & Vitt, 2003), yet the importance of aquatic escape mechanisms have rarely been 

studied (but see Lin et al., 2008; Hare & Miller, in review). Voluntary (i.e. unrestrained) 

maximum dive time may be a relevant measure of performance for semi-aquatic species 

(Hare & Miller, in review), but semi-aquatic lizards do not necessarily possess any unique 

physiological adaptations for diving (Daniels et al., 1987). Body size is positively correlated 

with oxygen stores and inversely correlated with metabolic rate; larger animals should 

therefore be able to dive for longer absolute periods. While this relationship holds true 

among endotherms (Schreer & Kovacs, 1997), ectotherms challenge this assumption, as 

dive duration was not correlated with body size across 22 species of reptiles (Brischoux et 

al., 2008). However, the effect of body size on dive duration may be blurred in 

interspecific comparisons, and body size may have a strong intraspecific influence on 

diving capacity (Brischoux et al., 2008). Indeed, larger body size is related to an increased 

capacity for anaerobic metabolism in some ectotherms (McDonald et al., 1998). 

 

We aimed to determine the relationship between alternate predator escape tactics that 

may be influenced by different underlying morphological, physiological, and behavioural 

traits. We used the semi-aquatic skink Oligosoma suteri (Boulenger) to examine 

relationships between maximal sprint speed and dive duration. To escape potential 

predators, O. suteri will run over short distances in search of cover and/or readily dive into 

intertidal marine waters (Whitaker, 1968; Towns, 1975a; Miller, 2007, Appendix 2). 
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Specifically, we asked whether age and/or pregnancy status differentially affect these 

predator escape tactics and whether speed and dive time are positively correlated. 

 

A1.3 Methods 

 

A1.3.1 Animal collection and husbandry 
 

We caught 149 O. suteri (117 adults and 32 juveniles) from Korapuki Island (18 ha, 

36°39.5’S, 175°51’E) in the Mercury Island Group, New Zealand. Oligosoma suteri are 

nocturnal, oviparous skinks that reach a maximum snout-vent length (SVL) of 108 mm 

(Hardy, 1977). They are restricted to boulder beaches and rocky platforms, residing close 

to the high water mark (Towns, 1975a). They are vulnerable to both terrestrial and avian 

predators, including tuatara (Sphenodon spp.), Australasian harriers (Circus approximans), 

gulls (Larus spp.), New Zealand kingfishers (Halcyon sancta), and native owls (Ninox 

novaeseelandiae; Whitaker, 1968). Lizards comprise a large portion of the diet of some of 

these predators (Hayes, 1991). Skinks were captured from 14 November to 5 December 

2006 (late Austral spring) using pitfall traps baited with cat food and placed parallel to the 

high water mark. 

 

Animals were housed individually in 2-L plastic containers with damp paper towels for 2-3 

days (depending on their size) before performance trials to ensure all were in a post-

absorptive state (Robert & Thompson, 2000). All lizards defecated within this time period 

and did not defecate during or after the performance tests. Photoperiod was natural 

14:10 light: dark (sunrise at ~0600 h) and ambient air temperature in the shade where 

experiments were conducted was 17.5 ± 0.05 C. Temperatures during all trials were 

measured at 15 min intervals using thermal data loggers accurate to 0.3 C (StowAway 

TidbiT, Onset Computer, Bourne MA). Data on the preferred body temperatures of free-

ranging O. suteri does not exist, but they reach maximum body temperatures of 25 C in 

captivity and foraging ceases below 8-10 C (Towns, 1975a). 

 

Standard morphometric measurements (mass, SVL, vent-tail length (VTL), tail 

regeneration length, and hind-limb length (HLL)) were taken prior to testing (Table A1.1). 

Hind-limb length is correlated with sprint speed in some lizards (Bonine & Garland, 1999). 

Individuals were regarded as adults if over 75 mm SVL, which was the size of the smallest 

gravid female captured. Sex of adults was determined by eversion of the hemipenes in 
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males; juvenile sex could not be determined. Gravidity status and an estimate of clutch 

size of females were determined by abdominal palpation. Ovulation of O. suteri occurs in 

late October and oviposition in late December (Towns, 1975b), so eggs were well-formed 

during the trapping period, and palpation is a reliable indicator of reproductive condition 

in Oligosoma species (Holmes & Cree, 2006). 

 

A1.3.2 Sprint trials 
 

Sprint tests were conducted on a plastic racetrack (80 mm x 1.5 m) with five paired 

infrared lights (0.25 m apart and 4 mm high) connected to a digital counter (modified 

from Huey et al., 1981) that were able to resolve the elapsed times between interruption 

of successive beams to <1 ms. 

 

We conducted three trials per individual with at least 15 min rest between each trial. 

Animals were left undisturbed for 30 min before the first trial to acclimate to the ambient 

temperature. Sprinting was encouraged by touching the tail with a paintbrush. The 

maximum sprint speed over 0.25 m (instead of the available 1 m distance) was used, as 

this is a more ecologically relevant measure for O. suteri, which are typically found on 

rocky beaches where long sprints are not necessary to reach cover (Towns, 1975a). The 

fastest measure of speed across the three trials was used in the analyses. Speed was 

measured between 0840 h and 1620 h and the order of individuals was randomised over 

the three trials. Although O. suteri are recorded as nocturnal, 28% of adult captures in a 

previous study occurred during the day (K. Hare, unpublished data), suggesting that O. 

suteri are not strictly nocturnal. During sprint trials, some individuals paused while 

running, and we recorded the number of pauses over 1 m. A pause was scored where an 

individual ran forwards after the tail was touched, then stopped and required another 

touch to continue running. 

 

A1.3.3 Dive trials 
 

Three voluntary dive trials were conducted per animal in an artificial rock pool between 

1200 h and 2030 h. All dive trials were conducted on the same day as, but after 

completion of, sprint trials; animals were given at least 120 min rest before dive trials 

were started, and were left undisturbed for 30 minutes before the first trial to acclimate to 

the ambient temperature. Animals were given at least 60 min rest between each dive 

trial, and the order of individuals was randomised over the three trials. 
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The artificial rock pool was created using a darkened round plastic bin (base 340 mm 

diameter; 20 L to fill line) and rocks, seaweed, and intertidal seawater (temperature 16.7 ± 

0.07 C; modified from Hare & Miller, in review). Rocks were placed so that one was above 

the water line as a diving platform, and animals were placed on this emergent rock facing 

away from the researcher. Diving was encouraged by tapping on the tail. Some skinks did 

not dive, and instead swam on the surface of the water. If an animal did not dive after 10 

s, we removed it from the experiment. If an animal dived, we recorded whether it went on 

top of or beneath the substrate (seaweed or rocks), whether it moved while submerged 

(movement at least 50 mm), and the time between submergence and voluntary 

emergence (i.e. the length of time that the animals had no access to air, hereafter “dive 

duration”) using a manual stopwatch (accurate to 1 s). Dive duration was a homologous 

trait across all individuals, as animals typically dived immediately after touching the tail 

and remained motionless for the entire dive, and never swam under water for more than 

a total of 5 s during the entire dive. 

 

A1.3.4 Statistical analysis 
 

All data were analysed using the statistical programmes R version 2.5.1 (R-Development-

Core-Team, 2007) and SPSS version 16.0, and significance was assumed at P < 0.05. Data 

were tested for normality and are expressed as mean ± 1 SE. Data transformations were 

performed as required to meet assumptions of normality. Body condition was calculated 

as the residuals from fitted data using a linear regression of log(Mass) on log(SVL), and 

limb length relative to body size (hereafter ‘limb length’) was calculated as the residuals 

of log(HLL) on log(SVL). 

 

We tested for the presence of correlations within an individual for sprint speed (and dive 

time) across the three sprint (and dive) trials using Pearson’s correlation coefficients. P-

values were obtained by using 1,000 permutation tests and adjusted using sequential 

Bonferroni adjustments. We also tested for potential correlations between an individual’s 

maximum sprint speed and maximum dive duration using Pearson’s correlation 

coefficient. 

 

Animals were divided into four groups based on age, sex, and gravidity status: males, 

gravid females, non-gravid females, and juveniles (Table A1.1). We first tested whether 
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groups differed in the tendency to pause during sprint trials, move during dive trials, or 

go beneath the substrate in dive trials (respectively) using a one-way ANOVA. Groups did 

not differ in these behavioural tendencies (P > 0.05 for all comparisons). We tested for 

differences in sprint speed and dive duration among all four groups with a one-way 

ANOVA, and post-hoc tests were conducted using Tukey’s HSD. We then separately 

tested for differences among groups while accounting for differences in body size (see 

Table A1.1) using the residuals of sprint speed or dive duration on log(SVL). 

 

As time of day influences swimming speed of elapid snakes (Llewelyn et al., 2006), we 

tested whether time of day influenced sprint speed or dive duration using a one-way 

ANOVA. The times of sprint trials were split into morning (0830-1230 h) and afternoon 

(1230-1630 h) periods, and the times of dive trials were split into afternoon (1200-1600 h) 

and early evening (1600-2030 h) periods. Time of day had no influence on performance in 

any group in either sprint or dive trials (P > 0.05 for all groups) and was not included in 

further analyses. 

 

We analysed what factors may influence whether an animal dived or did not dive using 

generalized linear mixed effect models (glmm), which incorporate linear regressions 

while allowing for repeated measures from individuals. Data from all trials (three per 

individual) were used. Whether an animal dived or not was included as the binary 

response variable, and the covariates were SVL, body condition, a measure of the degree 

of tail loss (SVL/(SVL+VTL); hereafter referred to as tail loss), and maximum sprint speed. 

Individual was included as a random repeated variable, and age, sex, and gravidity status 

were included as a single factor (male, gravid female, non-gravid female, or juvenile). 

 

We analysed morphological and behavioural factors influencing maximum sprint speed 

and dive duration separately for males, gravid females, and juveniles. We did not analyse 

the maximum performance of non-gravid females in relation to morphological and 

behavioural traits because of the small sample size (n = 15). We ran a series of standard 

least squares and reverse stepwise multiple regressions with the log of sprint speed and 

log of dive duration as dependent variables. The covariates were SVL, body condition, 

and tail loss. Clutch size was included as a factor for gravid females. We included limb 

length and whether an animal paused in models of sprint speed. In models of dive 

duration, we also included whether an animal moved or did not move while under water 
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and whether an animal went beneath the substrate. If an animal did not dive in any trial, 

dive duration was treated as a missing value. 

 

A1.4 Results 

 

A1.4.1 Sprint speed 
 

Maximum sprint speed ranged from 0.75-2.21 ms-1 for males, 0.70-1.33 ms-1 for gravid 

females, 0.90-2.37 ms-1 for non-gravid females, and 0.68-1.29 ms-1 for juveniles. Individual 

sprint speed was highly correlated across all trials (r = 0.43-0.62; P < 0.001 for all 

correlations). Thus, animals with high speeds in trial 1 had high speeds in trials 2 and 3. 

   

Multiple regression did not produce a significant model for sprint speed in gravid females 

or juveniles (P = 0.42 and P = 0.40, respectively; Table A1.2). A significant model was 

generated for male sprint speed (F5,56 = 3.31, P = 0.01), and tail loss was the only predictor 

of speed (Table A1.2). Reverse stepwise regression resulted in a significant model that 

only retained tail loss and accounted for 18.2% of the total variation in male sprint speed. 

Males with shorter tails ran slower than males with longer tails (F1,60 = 14.58, P < 0.001). 

 

Table A1.2 Results of multiple regression models of maximum sprint speed and dive 
duration of Oligosoma suteri. 
 

Males 
(N = 62) 

 
Gravid females 

(N = 40) 
 

Juveniles 
(N = 32) 

Model 
independent 
variable F ratio P value  F ratio P value  F ratio P value 

Sprint Speed 3.31 0.01  1.03 0.42  1.06 0.40 
SVL 2.40 0.13  1.34 0.26  0.008 0.93 
Limb length 0.97 0.33  0.04 0.84  2.17 0.15 
Body Condition 0.93 0.34  0.79 0.38  0.86 0.36 
Tail Loss 11.84 0.001  0.58 0.45  2.02 0.17 
Clutch Size na na  3.39 0.07  na na 
Pause (Y/N) 0.38 0.54  0.04 0.84  0.25 0.62 
         

Dive Duration 3.25 0.01  0.32 0.92  1.82 0.15 
SVL 1.84 0.18  0.43 0.52  1.73 0.20 
Body Condition 0.15 0.70  0.02 0.90  0.05 0.83 
Tail Loss 0.78 0.38  0.01 0.92  0.30 0.59 
Clutch Size na na  0.06 0.81  na na 
Move (Y/N) 0.35 0.56  0.62 0.44  <0.001 0.99 
Substrate (Y/N) 13.1 <0.001  0.80 0.38  7.01 0.01 

SVL: snout-vent length 
Limb length: residuals of log(hind-limb length) on log(SVL) 
Body Condition: residuals of log(mass) on log(SVL) 
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A1.4.2 Dive duration 
 

Eighty-nine percent of skinks dived in at least one trial, 78% of skinks dived in all three 

trials, and 16 skinks (11%) did not dive in any trial. No morphological factors or maximum 

sprint speed explained whether an individual dived or not (P > 0.10 for all measures). Dive 

durations were highly correlated across all three trials (r = 0.63-0.69, respectively; P < 

0.001 for all correlations). Maximum dive durations ranged from 20-893 s for males, 71-

1229 s for gravid females, 45-393 s for non-gravid females, and 19-811 s for juveniles. 

 

Multiple regression did not produce a significant model for dive duration in gravid 

females (P = 0.92; Table A1.2). A significant model was generated for male dive duration 

(F5,47 = 3.25, P = 0.01); a nonsignificant model was generated for juvenile dive duration 

(F5,25 = 1.82, P = 0.15), but whether an animal went beneath the substrate was significant 

(Table A1.2). Reverse stepwise regression resulted in significant models for male and 

juvenile dive duration that retained only whether an animal went beneath the substrate, 

and accounted for 22.7% and 18.0% of the variation in dive duration, respectively. Dive 

duration was significantly longer in males that went beneath the substrate (334.24 ± 

38.49 s) than males that stayed on top of the substrate (91.56 ± 21.50 s; F1,51 = 16.26, P < 

0.001). Similarly, dive duration was longer in juveniles that went beneath the substrate 

(319.69 ± 41.51 s) than those that stayed on top of the substrate (54.16 ± 10.06 s; F1,29 = 

7.58, P = 0.01). 

 

A1.4.3 Relationship of Sprint Speed to Dive Duration 
 

Both sprint speed and dive duration differed significantly among males, gravid females, 

non-gravid females, and juveniles (P < 0.001 and P = 0.03, respectively; Figure A1.1). 

Gravid females had slower sprint speeds, but longer dive durations than males (P < 0.001 

and P = 0.04, respectively) and non-gravid females (P < 0.001 and P = 0.10, respectively). 

The latter trend was not statistically significant, but the lack of significance was probably 

related to the small sample size of non-gravid females (dive durations were only obtained 

from 13 non-gravid females). Juveniles had slower sprint speeds than both males and 

non-gravid females (P < 0.001 and P = 0.003, respectively), but similar sprint speeds to 

gravid females (P = 0.83). Mean dive duration of juveniles was not significantly different 
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from gravid females (P = 0.17), males (P = 0.99) or non-gravid females (P = 0.89). Males 

and non-gravid females had similar sprint speeds and dive durations (P = 0.89 and 

P = 0.94, respectively). Significance did not change after correcting sprint speed and dive 

time for body size. The pattern observed for gravid females (slow runner, long diver) did 

not hold true at the individual level. Individual sprint speed and dive time were not 

correlated within any group or overall (r = -0.30 to 0.26, P > 0.1 for all correlations; Figure 

A1.2). 

 

 

Figure A1.2 Relationship between maximum sprint speed and maximum dive duration 
of males, gravid females, non-gravid females, and juvenile Oligosoma suteri. Individual 
sprint speed and dive duration were not correlated within any group or overall (r = -0.30 
to 0.26, P > 0.1 for all correlations). 
 

A1.5 Discussion 

 

Sprint speed and dive duration of a semi-aquatic lizard were not influenced by the same 

morphological and behavioural traits. Sprint speed and dive duration were not correlated 

among individuals, but animals of different age classes and gravidity status showed 

marked differences in mean sprint speed and dive duration. Gravid females and juveniles 

were poorer sprinters than males and non-gravid females, but both had equal or greater 

mean dive durations than males and non-gravid females. Thus, individuals that have 

slower sprint speeds because of gravidity or age may be able to compensate by relying 

more heavily on diving as a means of predator escape. 
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Morphological differences among individuals can increase the variability of speed. Male 

O. suteri with shorter tails due to tail loss had lower speeds, probably caused by a 

biomechanical imbalance. While running, the tail is generally used to shift the animal’s 

centre of gravity to its hind legs (Ballinger, Nietfeldt & Krupa, 1979), and tail loss has 

commonly been associated with the reduction of sprint speed in lizards (Chapple & 

Swain, 2002; Downes & Shine, 2001; Punzo, 1982). Tail loss did not have a significant 

effect on sprint speed in gravid females, nor did any of the other measurements taken. 

Pregnancy frequently impairs locomotor performance and increases the risk of predation 

in many species (Olsson et al., 2000; Sinervo, Hedges & Adolph, 1991), and pregnancy may 

have a greater influence on speed than other factors, including tail loss. Juvenile speed 

was not influenced by tail loss, but extensive tail loss was not common in juveniles 

(Table A1.1). 

 

The wide range of dive durations seen in O. suteri may be due to the physiological 

capacity for apnoea not being taxed in some individuals. However, the high repeatability 

across all trials indicates that the physiological capacity of individuals was being reached. 

Still, we found no relationship between dive duration of males, gravid females, or 

juveniles, and any of the morphological measurements taken, despite predictions that 

intraspecific comparisons over a wide range of size and/or mass may reveal such links 

(Brischoux et al., 2008; Hare & Miller, in review). However, individual performance is most 

likely to be best explained by direct physiological factors (e.g. the capacity for anaerobic 

metabolism) rather than by the predicted correlates of those factors (e.g. body size; 

McDonald et al., 1998). For example, weapon performance has a far stronger effect on the 

fitness of territorial lizards (C. collaris) than weapon size because of its direct influence on 

the outcomes of territory disputes (Lappin & Husak, 2005). 

 

Although there was no clear relationship between morphological measurements and 

dive duration, behavioural traits while diving had a strong and significant effect on dive 

duration in males and juveniles. By going underneath the substrate, animals may reduce 

their activity and exert less energy to remain underwater. Reduced activity would 

decrease metabolic demands and oxygen consumption (Wang et al., 1997; Williams et al., 

1999), thereby allowing animals to dive for longer. Further, by going underneath the 

substrate, animals may be more cryptic, which would provide an additional measure of 
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security against both terrestrial and aerial predators, particularly those that are able to 

catch prey in water (e.g. kingfishers). 

 

Dive durations of juvenile and adult O. suteri in this study were equivalent (Figure A1.1b) 

and unrelated to body size. This contrasts with those of juvenile water skinks (Eulamprus 

quoyii), which dived for shorter periods of time than adults (Daniels, 1984). Species 

differences may result from sized-based differences (e.g. lung capacity) or from juvenile E. 

quoyii having limited experience with water; as juveniles, they are generally found further 

from water than adults (Daniels, 1984). All O. suteri likely have similar experience with rock 

pools. Juvenile O. suteri have frequent opportunities to dive, as they are relegated to areas 

of poor habitat close to the tide line (Towns, 1975a). 

 

When close to the tide line, both running and diving are practicable strategies for escape. 

Importantly, diving performance in this study was unimpaired by the major 

morphological factor that impaired male speed (tail loss). Impairment of speed has been 

attributed to the increased risk of capture during an attack (Downes & Shine, 2001), but in 

semi-aquatic species such as O. suteri, animals with poor speed because of tail loss may 

have a greater likelihood of successful escape via diving. Similarly, juveniles are generally 

poor sprinters (Figure A1.1a). Juvenile O. suteri may be slower than adults because of their 

small size and age (Hare et al., 2008), yet mean dive duration of juveniles was equivalent 

to males and non-gravid females. Thus, juveniles may have a greater likelihood of escape 

via diving relative to running. 

 

Behavioural shifts may allow gravid females to avoid predation, despite the fact that 

gravidity impairs locomotor performance. Reproduction often comes at a cost to escape 

performance in many taxa (Ghalambor et al., 2004; Olsson et al., 2000), and as expected, 

gravid O. suteri had slower sprint speeds than non-gravid females and males. However, 

gravid females had longer dive times than both of these groups (Figure A1.1b). 

Reproduction may reduce escape performance via sprint speed, but physiological or 

physical changes during pregnancy may simultaneously improve alternate escape ability 

(i.e. dive duration). For example, an increase in mass or body condition associated with 

gravidity (physical change) may aid in remaining underwater. 

 

Selection may act on performance differently under specific ecological or physiological 

conditions or may be constrained by the interaction of traits. Crypsis is a commonly 
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employed strategy for predator avoidance in diverse taxa (Palma & Steneck, 2001; Ruxton 

et al., 2004), and may serve as a third escape mechanism for O. suteri. Common lizards 

(Lacerta vivipara) rely heavily on crypsis during pregnancy to lessen their vulnerability to 

predation (Bauwens & Thoen, 1981). Although we did not test for the use of crypsis in O. 

suteri, it is possible that individuals use crypsis during escape. If a group with impaired 

speed because of their state (e.g. juveniles, gravid females, or those with tail loss) relies on 

either alternate strategy (diving and/or crypsis) more than running, then selection on 

sprint speed would be less apparent in those groups. 

 

Although there are clear patterns of performance abilities between age classes and 

animals of differing reproductive status, speed and dive time are not correlated among 

individual O. suteri (Figure A1.2). The two predator escape mechanisms may be unrelated 

morphologically and physiologically, as animals that perform well at one measure may or 

may not perform well at the other. Maximum sprint speed over short distances is 

influenced by the proportion of fast-twitch muscle fibres (Esbjornsson et al., 1993), but 

dive duration is likely related to maximum lung capacity and rate of oxygen consumption. 

Dive duration may also rely on endurance capacity. Sprint speed and endurance capacity, 

measured by running stamina, are negatively correlated among 12 species of lacertid 

lizards, though the mechanism underlying this trade-off is unclear (Vanhooydonck et al., 

2001). 

 

Importantly, sprint and dive performance were not correlated with each other, either 

positively or negatively. Thus, employment of an alternate escape strategy may therefore 

provide a means of compensation for poor performance ability when one type of 

performance is impaired. For semi-aquatic lizards, the factors that affect speed and dive 

duration will have a strong influence on an animal’s vulnerability to predation. 

Investigating intraspecific variation in the physiological mechanisms underlying sprint 

speed and dive durations will allow a greater understanding of how these independent 

factors are integrated into whole-animal performance. Although selection on whole-

animal performance ability has been quantified in many studies, several studies have 

found no evidence for selection on performance traits (Irschick et al., 2008). Individuals 

with poor performance ability may have a greater likelihood of survival by adopting an 

alternate escape strategy. In cases where animals use multiple strategies (e.g. sprinting 

and diving) for the same function, detecting and quantifying selection on one trait (e.g. 

sprint speed) in isolation will be difficult. Understanding how selection acts on a suite of 
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performance traits used for the same task may prove to be a worthy challenge. Field 

observations on the behavioural relationship between these escape mechanisms may 

clarify why individuals employ these alternative strategies in the face of predation. By 

investigating how predation risk is managed, we will more fully understand how the 

interaction of multiple predator escape tactics influences individual fitness. 
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