Open Access Te Herenga Waka-Victoria University of Wellington
thesis_access.pdf (32.31 MB)

Finite-element Modelling of Haupapa/Tasman Glacier's Basal Sliding Events

Download (32.31 MB)
posted on 2021-12-08, 07:58 authored by Macklin, Clarrie

The rate of ice loss from glaciers and ice caps is a major source of uncertainty in predicting sea level rise out to 2100. Improving the predictive capability of ice flow models will, in part, require a more robust coupling of climate to long-term and short-term variability in glacial discharge. An ongoing concern is the role that surface melting and rainfall plays in accelerating glacier flow. Rapid drainage of surface water to the base of a glacier or ice sheet is thought to elevate basal water pressure, reduce basal friction, and thereby increases sliding speed. Here, we present several rain-induced speed-ups of Haupapa/Tasman Glacier, South Island, New Zealand, recorded by GNSS (Global Navigation Satellite System) instruments. Observed speed-up events involve large vertical offsets (up to ~53 cm) and large horizontal accelerations of up to twenty-four times background velocity. Due to it's pronounced sliding events, Haupapa/Tasman Glacier offers a useful case study for investigating the processes that govern the sliding behaviour of large glaciers prone to increasing meltwater variability as a cause of enhanced mass loss in a warming climate. The observed correspondence of vertical displacement and horizontal acceleration in this study suggests that the rapid growth of water-filled cavities at the bed controls basal motion during speed-ups. However, sliding laws that relate changes in basal velocity to changes in water pressure do not account for cavity growth. To investigate the processes governing a typical speed-up event, we use a finite-element modelling approach combined with a commonly-used sliding law to recreate internal deformation and basal sliding of Haupapa/Tasman Glacier during rain-induced acceleration. In general, we find peak velocities can only be achieved when basal water pressure exceeds ice overburden and velocity at the glacier sides is allowed to exceed that observed by a GNSS unit situated near the margins. The sliding law requires a more complete treatment of cavity growth under rapid water pressure changes to better capture basal acceleration observed at Haupapa/Tasman Glacier.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline


Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Master of Science

Victoria University of Wellington Unit

Antarctic Research Centre

ANZSRC Type Of Activity code


Victoria University of Wellington Item Type

Awarded Research Masters Thesis



Victoria University of Wellington School

School of Geography, Environment and Earth Sciences


Horgan, Huw; Anderson, Brian