Development of a spin-injection device utilising Gadolinium Nitride
In this thesis, the first steps in creating a realisable spin-injection transistor using ferromagnetic semiconductor electrodes are detailed. A spin-injection device utilising the ferromagnetic semiconductor gadolinium nitride has been designed, fabricated and electrically tested. In addition, an experimental setup for future measurements of a spin current in spin-injection devices was adapted to our laboratory-based off one developed by the Shiraishi group at Kyoto University. Issues encountered during fabrication were identified, and an optimal method for fabricating these devices was determined. Gadolinium nitride and copper were used to make the devices on Si/SiO2 substrates. The electrical integrity and applicability of the devices for future measurements of injected spin-current was determined through electrical device testing. Resistance measurements of electrical pathways within the device were undertaken to determine the successful deposition of the gadolinium nitride and copper. IV measurements to determine if the devices could withstand the current required for spin current measurements were done. The durability of the devices through multiple measurement types was observed. It was determined that although spin-injection devices utilising gadolinium nitride can be successfully fabricated, more work needs to be done to ensure that the electrical pathways through the copper and gadolinium nitride can be consistently reproducible to allow spin-injection measurements to be done.