Development of Extrospective Systems for Mobile Robotic Vehicles.
Extrospection is the process of receiving knowledge of the outside world through the senses. On robotic platforms this is primarily focussed on determining distances to objects of interest and is achieved through the use of ranging sensors. Any hardware implemented on mobile robotic platforms, including sensors, must ideally be small in size and weight, have good power efficiency, be self-contained and interface easily with the existing platform hardware. The development of stable, expandable and interchangeable mobile robot based sensing systems is crucial to the establishment of platforms on which complex robotic research can be conducted and evaluated in real world situations. This thesis details the design and development of two extrospective systems for incorporation in the Victoria University of Wellington's fleet of mobile robotic platforms. The first system is a generic intelligent sensor network. Fundamental to this system has been the development of network architecture and protocols that provide a stable scheme for connecting a large number of sensors to a mobile robotic platform with little or no dependence on the existing hardware configuration of the platform. A prototype sensor network comprising fourteen infrared position sensitive detectors providing a short to medium distance ranging system (0.2 - 3 m) with a 360' field of view has been successfully developed and tested. The second system is a redesign of an existing prototype full-field image ranger system. The redesign has yielded a smaller, mobile version of the prototype system capable of ranging medium to long distances (0 - 15 m) with a 22.2' - 16.5' field-of-view. This ranger system can now be incorporated onto mobile robotic platforms for further research into the capabilities of full-field image ranging as a form of extrospection on a mobile platform.