Open Access Te Herenga Waka-Victoria University of Wellington
Browse
- No file added yet -

Developing a scalable synthesis of Peloruside A

Download (5.95 MB)
thesis
posted on 2021-12-07, 08:03 authored by Amira Brackovic

Peloruside A (PelA, 1) is a marine natural product isolated from a sponge Mycale hentscheli found in Pelorus Sound, New Zealand. It is a microtubule-stabilising agent, active against various cancerous cell lines at nanomolar concentrations and offers several advantages over the current drugs on the market due to its unique mode of microtubule stabilisation, its potency and its activity in multidrug resistant cells. Since large-scale isolation of the compound from the sponge is unsustainable and an attempt to grow the sponge failed due to a sea-slug infestation, devising an efficient synthesis of peloruside A that will be able to deliver larger quantities of this compound is essential in order to conduct further studies and enable the eventual manufacture of the drug.   Peloruside A is also a very interesting synthetic target as a macrolide with ten stereogenic centres, an internal pyran ring and a trisubstituted Z-double bond. Our synthetic strategy combines elements from previous total and partial syntheses with novel elements with an aim to make the synthesis more efficient. The synthesis of the side-chain fragment (C12–C20) was based on Evans' methodology1 which was also utilised to couple this fragment with the C8–C11 fragments. It was envisioned to evaluate two different end-game strategies, and to this end it was necessary to synthesise two different versions of the C8–C11 fragment. However, the synthesis of the C1–C7 fragments proved to be quite challenging and required a lot of alterations to the synthetic plan and the protecting group strategy. Various routes based on previous syntheses by Ghosh, Jacobsen and Taylor were explored.2–4 Eventually, the key intermediate was synthesised using a modified Taylor methodology. Our future work will focus on optimising and establishing fragment coupling methodologies and evaluating the two end-game approaches: macrolactonisation and a ring-closing metathesis.

History

Copyright Date

2018-01-01

Date of Award

2018-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Chemistry

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

ANZSRC Type Of Activity code

1 PURE BASIC RESEARCH

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Harvey, Joanne; Tyler, Peter