Data driven design: An investigation into the fit between the individuality of people and the uniformity of mass manufactured items
Due to the economic advantage of mass manufacturing technology humans have designed a world of products built for the average body size and shape. This conformity of diverse body shapes to fixed 3 dimensional forms raises the question for this research; how can 3D scanning and additive manufacturing (AM) create a personal fit between an individual’s body and a product? This question challenges a tool driven standardised approach to manufacture by exploring the interface between a person and a mass produced product, in this case a motorcycle rider and a motorcycle. By taking advantage of digital data and the tool-less build process of 3D printing, every object produced can be different, tailoring it to the customer’s individual aesthetic or physical fit. This investigation into the space between the motorcycle and the human has produced a custom 3D printed seat designed for and inspired by the unique physicality of the individual rider. The following methods are employed. 3D scanning is used to obtain the geometry of the human form and motorcycle, 3D modelling and 3D printing to generate and evaluate ideas and concepts, and a pressure measurement system to evaluate the riders comfort and fit. This new relationship between body and object, rarely seen in mass produced products, questions the way we design and make products with consideration towards digital personalisation and manufacturing efficiency.