Open Access Te Herenga Waka-Victoria University of Wellington
Browse
- No file added yet -

Crystal Forensics of Historical Lava Flows from Mt Ngauruhoe

Download (38.37 MB)
Version 3 2023-03-14, 23:31
Version 2 2023-03-13, 23:59
Version 1 2021-11-15, 06:19
thesis
posted on 2023-03-14, 23:31 authored by Barton, Sophie Jan

Mt Ngauruhoe is a 900 m high andesitic cone constructed over the last 2500 yr, and is the youngest cone of the Tongariro Massif. It was previously one of the most continuously active volcanoes in New Zealand, with ash eruptions having occurred every few years since written records for the volcano began in 1839. However, it has now been more than 30 yr since the last eruption. Eruptions in 1870, 1949, 1954 and 1974-1975 were accompanied by lava and block-and-ash flows. Detailed sampling of these historical lava and block-and-ash flows was conducted, including sampling from seven different lava flows erupted over the period June-September 1954 to investigate changes in magma geochemistry and crystal populations over short timescales, and to enable observed changes to be related back to known eruption dates. Mineral major and trace element chemistry highlights the importance of mixing between distinct basaltic and dacitic melts to generate the basaltic andesite whole rock compositions erupted. The basaltic end member can be identified from the presence of olivine crystals with Mg# 75-87, clinopyroxene cores with Mg# 82-92, and plagioclase cores of An80-90. The dacitic melt is identified by SiO2-rich clinopyroxene melt inclusions, clinopyroxene zoning with Mg# 68-76 and plagioclase rims of An60-70. Textural evidence from complex mineral zoning and large variability in the widths of reaction rims on olivine crystals suggests that mafic recharge of the more evolved system is frequent, and modelling of Fe-Mg inter-diffusion applied to the outermost rims of the clinopyroxene crystal population indicates that such recharge events have occurred weeks to months or even shorter prior to each of the historical eruptions, and thus likely trigger the eruptions.

History

Copyright Date

2011-01-01

Date of Award

2011-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Geology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Geography, Environment and Earth Sciences

Advisors

Baker, Joel