Open Access Te Herenga Waka-Victoria University of Wellington
thesis_access.pdf (35.64 MB)

Aminophosphine Reduction Mechanisms and the Synthesis of Indium Phosphide Nanomaterials

Download (35.64 MB)
Version 2 2023-09-22, 01:43
Version 1 2021-12-07, 16:31
posted on 2023-09-22, 01:43 authored by Laufersky, Geoffry

Indium phosphide (InP) nanomaterials are attractive for countless technological applications due to their well-placed band gap energies. The quantum confinement of these semiconductors can give rise to size-dependent absorption and emission features throughout the entire visible spectrum. Therefore, InP materials can be employed as low-toxicity fluorophores that can be implemented in high value avenues such as biological probes, lighting applications, and lasing technologies. However, large scale development of these quantum dots (QDs) has been stymied by the lack of affordable and safe phosphorus precursors. Syntheses have largely been restricted to the use of dangerous chemicals such as tris(trimethylsilyl)phosphine ((TMS)₃P), which is costly and highly sensitive to oxygen and water. Recently, less-hazardous tris(dialkylamino)phosphines have been introduced to produce InP QDs on par with those utilizing (TMS)₃P. However, a poor understanding of the reaction mechanics has resulted in difficulties tuning and optimizing this method.  In this work, density functional theory (DFT) is used to identify the mechanism of this aminophosphine precursor conversion. This understanding is then implemented to design an improved InP QD synthesis, allowing for the production of high-quality materials outside of glovebox conditions. Time is spent understanding the impact of different precursor salts on the reaction mechanisms and discerning their subsequent effects on nanoparticle size and quality. The motivation of this work is to formulate safer and less technical indium phosphide quantum dot syntheses to foster non-specialist and industrial implementation of these materials.


Copyright Date


Date of Award



Te Herenga Waka—Victoria University of Wellington

Rights License

CC BY 4.0

Degree Discipline


Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level


Degree Name

Doctor of Philosophy

Victoria University of Wellington Unit

Macdiarmid Institute for Advanced Materials and Nanotechnology

ANZSRC Type Of Activity code


Victoria University of Wellington Item Type

Awarded Doctoral Thesis



Alternative Language


Victoria University of Wellington School

School of Chemical and Physical Sciences


Nann, Thomas; Coles, Martyn