Open Access Te Herenga Waka-Victoria University of Wellington
Browse

A Study of Late Ventral Body Wall Degeneration in the Embryonic Chick, with Special Reference to the Cell Cycle

Download (16.43 MB)
thesis
posted on 2021-11-08, 04:49 authored by Barwell, Peter

The cell kinetics and morphological changes during late ventral body wall development of the embryonic chick were studied, particularly midline degeneration and the medial migration of lateral tissues. An histological examination of these events was undertaken, along with autoradiography to determine the duration of the cell cycle, followed by teratological studies involving the prevention of differentiative events in the cell death pathway, using BrDU and Janus B Green as agents. The effects of cell cycle blockade on rates of cell death were also examined, as was the tissues ability to express differentiative features in vitro. Ventral body wall (VBW) cell death was classified as apoptosis, and was involved in two distinct events. Medial migration of lateral tissues began at day 5 of development, with widespread VBW apoptosis being seen by day 6, limited to the original mesoderm of the region. A later precise line of apoptosis (the VBL), involving both ectodermal cells of the midline ectodermal ruffle and the underlying mesodermal cells, was observed at day 7, spreading in a rostral to caudal fashion down the embryo, appearing as the migratory lateral tissues fused in the midline body wall. Increases in the amount of cell death are matched by decreases in the MI, such that at its peak (day 7.5 of development) the cell death rate is sufficiently greater than both the cell proliferation and immigration rates that a state of negative tissue growth ensues. The histological half-life of the apoptotic bodies approximates 3.8 hours. The ability to undergo apoptosis at day 7 is dependent upon a differentiative event around day 4 of incubation, and involves signal mechanisms intrinsic to the VBW tissues. BrDU application was found to inhibit apoptotic differentiation, in contrast to Janus B Green, which had a more generalised teratogenic effect on the region as a whole. Tissue culturing experiments revealed that an ectodermal-mesodermal interaction is important in regulating the extent of mesodermal apoptosis, the ectoderm playing a maintenance role for the mesoderm. Dead cells derive from the cycling cell population, as shown by the occurrence of labelled dead cells after autoradiography, and by the prevention of apoptosis by a cell cycle blockade, and by the production of a semi-synchronised wave of apoptoses after release of this blockade. These cell blockading results further suggest that entry into the apoptotic death program requires cells to be in a particular cell cycle stage, and it seems most likely that the decision to die was made in early G1. Tissue and cell growth rates, cell loss and death rates, cell birth rates and cell immigration rates were all determined for the VBW region throughout the time period studied.

History

Copyright Date

1993-01-01

Date of Award

1993-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Zoology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Biological Sciences

Advisors

Burton, Dave