Open Access Te Herenga Waka-Victoria University of Wellington
Browse

Seismic Response to Injection Well Stimulation in a High-Temperature, High-Permeability Reservoir

Download (3.48 MB)
journal contribution
posted on 2021-02-09, 07:23 authored by C Hopp, Steven Sewell, S Mroczek, Martha SavageMartha Savage, John TownendJohn Townend
©2019. American Geophysical Union. All Rights Reserved. Fluid injection into the Earth's crust can induce seismic events that cause damage to local infrastructure but also offer valuable insight into seismogenesis. The factors that influence the magnitude, location, and number of induced events remain poorly understood but include injection flow rate and pressure as well as reservoir temperature and permeability. The relationship between injection parameters and injection-induced seismicity in high-temperature, high-permeability reservoirs has not been extensively studied. Here we focus on the Ngatamariki geothermal field in the central Taupō Volcanic Zone, New Zealand, where three stimulation/injection tests have occurred since 2012. We present a catalog of seismicity from 2012 to 2015 created using a matched-filter detection technique. We analyze the stress state in the reservoir during the injection tests from first motion-derived focal mechanisms, yielding an average direction of maximum horizontal compressive stress (SHmax) consistent with the regional NE-SW trend. However, there is significant variation in the direction of maximum compressive stress (σ1), which may reflect geological differences between wells. We use the ratio of injection flow rate to overpressure, referred to as injectivity index, as a proxy for near-well permeability and compare changes in injectivity index to spatiotemporal characteristics of seismicity accompanying each test. Observed increases in injectivity index are generally poorly correlated with seismicity, suggesting that the locations of microearthquakes are not coincident with the zone of stimulation (i.e., increased permeability). Our findings augment a growing body of work suggesting that aseismic opening or slip, rather than seismic shear, is the active process driving well stimulation in many environments.

History

Preferred citation

Hopp, C., Sewell, S., Mroczek, S., Savage, M. & Townend, J. (2019). Seismic Response to Injection Well Stimulation in a High-Temperature, High-Permeability Reservoir. Geochemistry, Geophysics, Geosystems, 20(6), 2848-2871. https://doi.org/10.1029/2019GC008243

Journal title

Geochemistry, Geophysics, Geosystems

Volume

20

Issue

6

Publication date

2019-06-01

Pagination

2848-2871

Publisher

American Geophysical Union (AGU)

Publication status

Published

Online publication date

2019-06-20

ISSN

1525-2027

eISSN

1525-2027

Language

en