Despite increasing interest in the evolution of inhibitory control, few studies have examined the validity of widespread testing paradigms, the long-term repeatability and the heritability of this cognitive ability in the wild. We investigated these aspects in the inhibitory control performance of wild toutouwai (North Island robin; Petroica longipes), using detour and reversal learning tasks. We assessed convergent validity by testing whether individual performance correlated across detour and reversal learning tasks. We then further evaluated task validity by examining whether individual performance was confounded by non-cognitive factors. We tested a subset of subjects twice in each task to estimate the repeatability of performance across a 1-year period. Finally, we used a population pedigree to estimate the heritability of task performance. Individual performance was unrelated across detour and reversal learning tasks, indicating that these measured different cognitive abilities. Task performance was not influenced by body condition, boldness or prior experience, and showed moderate between-year repeatability. Yet despite this individual consistency, we found no evidence that task performance was heritable. Our findings suggest that detour and reversal learning tasks measure consistent individual differences in distinct forms of inhibitory control in toutouwai, but this variation may be environmentally determined rather than genetic.
Funding
From parasitism to mutualism: symbiosis interaction states and the adaptability of reef corals to climate change
McCallum, E. & Shaw, R. C. (2023). Repeatability and heritability of inhibitory control performance in wild toutouwai (Petroica longipes). Royal Society Open Science, 10(11), 231476-. https://doi.org/10.1098/rsos.231476