- No file added yet -
Numerical approximation to Benjamin type equations. Generation and stability of solitary waves
journal contribution
posted on 2020-06-17, 22:04 authored by VA Dougalis, A Duran, Dimitrios MitsotakisDimitrios Mitsotakis© 2018 Elsevier B.V. This paper is concerned with the study, by computational means, of the generation and stability of solitary-wave solutions of generalized versions of the Benjamin equation. The numerical generation of the solitary-wave profiles is accurately performed with a modified Petviashvili method which includes extrapolation to accelerate the convergence. In order to study the dynamics of the solitary waves the equations are discretized in space with a Fourier pseudospectral collocation method and a fourth-order, diagonally implicit Runge–Kutta method of composition type as time-stepping integrator. The stability of the waves is numerically studied by performing experiments with small and large perturbations of the solitary pulses as well as interactions of solitary waves.
History
Preferred citation
Dougalis, V.A., Duran, A. & Mitsotakis, D. (2019). Numerical approximation to Benjamin type equations. Generation and stability of solitary waves. Wave Motion, 85, 34-56. https://doi.org/10.1016/j.wavemoti.2018.11.002Publisher DOI
Journal title
Wave MotionVolume
85Publication date
2019-01-01Pagination
34-56Publisher
Elsevier BVPublication status
PublishedISSN
0165-2125eISSN
1878-433XLanguage
enUsage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC