Keypoints Detection and Feature Extraction: A Dynamic Genetic Programming Approach for Evolving Rotation-invariant Texture Image Descriptors
journal contribution
posted on 2020-10-28, 04:42 authored by Harith Al-Sahaf, Mengjie ZhangMengjie Zhang, A Al-Sahaf, M Johnston1089-778X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. The goodness of the features extracted from the instances and the number of training instances are two key components in machine learning, and building an effective model is largely affected by these two factors. Acquiring a large number of training instances is very expensive in some situations such as in the medical domain. Designing a good feature set, on the other hand, is very hard and often requires domain expertise. In computer vision, image descriptors have emerged to automate feature detection and extraction; however, domain-expert intervention is typically needed to develop these descriptors. The aim of this paper is to utilize genetic programming to automatically construct a rotation-invariant image descriptor by synthesizing a set of formulas using simple arithmetic operators and first-order statistics, and determining the length of the feature vector simultaneously using only two instances per class. Using seven texture classification image datasets, the performance of the proposed method is evaluated and compared against eight domain-expert hand-crafted image descriptors. Quantitatively, the proposed method has significantly outperformed, or achieved comparable performance to, the competitor methods. Qualitatively, the analysis shows that the descriptors evolved by the proposed method can be interpreted.
History
Preferred citation
Al-Sahaf, H., Zhang, M., Al-Sahaf, A. & Johnston, M. (2017). Keypoints Detection and Feature Extraction: A Dynamic Genetic Programming Approach for Evolving Rotation-invariant Texture Image Descriptors. IEEE Transactions on Evolutionary Computation, 21(6), 825-844. https://doi.org/10.1109/TEVC.2017.2685639Publisher DOI
Journal title
IEEE Transactions on Evolutionary ComputationVolume
21Issue
6Publication date
2017-12-01Pagination
825-844Publisher
IEEEPublication status
PublishedContribution type
ArticleOnline publication date
2017-03-22ISSN
1089-778XeISSN
1941-0026Language
enUsage metrics
Categories
Keywords
Classificationfeature extractiongenetic programming (GP)image descriptorkeypoint detectionScience & TechnologyTechnologyComputer Science, Artificial IntelligenceComputer Science, Theory & MethodsComputer ScienceLOCAL BINARY PATTERNSFACE RECOGNITIONCLASSIFICATIONCLASSIFIERSDESIGNSCALECOLORArtificial Intelligence & Image ProcessingElectrical and Electronic EngineeringInformation SystemsArtificial Intelligence and Image Processing
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC