Open Access Te Herenga Waka-Victoria University of Wellington
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Open Access Te Herenga Waka-Victoria University of Wellington and we can't guarantee its availability, quality, security or accept any liability.

Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active site residues

journal contribution
posted on 2021-02-24, 22:43 authored by KR Hall, KJ Robins, EM Williams, MH Rich, Mark CalcottMark Calcott, JN Copp, RF Little, Ralf SchwoererRalf Schwoerer, Gary EvansGary Evans, Wayne PatrickWayne Patrick, David AckerleyDavid Ackerley
© 2020, eLife Sciences Publications Ltd. All rights reserved. Selection for a promiscuous enzyme activity provides substantial opportunity for competition between endogenous and newly-encountered substrates to influence the evolutionary trajectory, an aspect that is often overlooked in laboratory directed evolution studies. We selected the Escherichia coli nitro/quinone reductase NfsA for chloramphenicol detoxification by simultaneously randomising eight active site residues and interrogating ~250,000,000 reconfigured variants. Analysis of every possible intermediate of the two best chloramphenicol reductases revealed complex epistatic interactions. In both cases, improved chloramphenicol detoxification was only observed after an R225 substitution that largely eliminated activity with endogenous quinones. Error-prone PCR mutagenesis reinforced the importance of R225 substitutions, found in 100% of selected variants. This strong activity trade-off demonstrates that endogenous cellular metabolites hold considerable potential to shape evolutionary outcomes. Unselected prodrug-converting activities were mostly unaffected, emphasising the importance of negative selection to effect enzyme specialisation, and offering an application for the evolved genes as dual-purpose selectable/counter-selectable markers.

Funding

Better, Faster, Stronger: Bionic Enzymes for Artificial Substrates | Funder: ROYAL SOCIETY OF NEW ZEALAND | Grant ID: 15-VUW-037

Molecular Contingency on a Massive Scale: How Entirely New Antibiotic Resistance Genes Evolve | Funder: ROYAL SOCIETY OF NEW ZEALAND | Grant ID: 19-VUW-076

History

Preferred citation

Hall, K. R., Robins, K. J., Williams, E. M., Rich, M. H., Calcott, M. J., Copp, J. N., Little, R. F., Schwörer, R., Evans, G. B., Patrick, W. M. & Ackerley, D. F. (2020). Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active site residues. eLife, 9, 1-40. https://doi.org/10.7554/eLife.59081

Journal title

eLife

Volume

9

Publication date

2020-10-01

Pagination

1-40

Publisher

eLife Sciences Publications, Ltd

Publication status

Published

Online publication date

2020-11-13

ISSN

2050-084X

eISSN

2050-084X

Language

en

Usage metrics

    Journal articles

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC