Error estimates for Galerkin finite element methods for the Camassa–Holm equation
journal contribution
posted on 2020-06-17, 22:06 authored by DC Antonopoulos, VA Dougalis, Dimitrios MitsotakisDimitrios Mitsotakis© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. We consider the Camassa–Holm (CH) equation, a nonlinear dispersive wave equation that models one-way propagation of long waves of moderately small amplitude. We discretize in space the periodic initial-value problem for CH (written in its original and in system form), using the standard Galerkin finite element method with smooth splines on a uniform mesh, and prove optimal-order L2-error estimates for the semidiscrete approximation. Using the fourth-order accurate, explicit, “classical” Runge–Kutta scheme for time-stepping, we construct a highly accurate, stable, fully discrete scheme that we employ in numerical experiments to approximate solutions of CH, mainly smooth travelling waves and nonsmooth solitons of the ‘peakon’ type.
History
Preferred citation
Antonopoulos, D.C., Dougalis, V.A. & Mitsotakis, D.E. (2019). Error estimates for Galerkin finite element methods for the Camassa–Holm equation. Numerische Mathematik, 142(4), 833-862. https://doi.org/10.1007/s00211-019-01045-7Publisher DOI
Journal title
Numerische MathematikVolume
142Issue
4Publication date
2019-08-01Pagination
833-862Publisher
Springer Science and Business Media LLCPublication status
PublishedOnline publication date
2019-05-11ISSN
0029-599XeISSN
0945-3245Language
enUsage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC