In-network caching is a central aspect of Information-Centric Networking
(ICN). It enables the rapid distribution of content across the network,
alleviating strain on content producers and reducing content delivery
latencies. ICN has emerged as a promising candidate for use in the Internet of
Things (IoT). However, IoT devices operate under severe constraints, most
notably limited memory. This means that nodes cannot indiscriminately cache all
content; instead, there is a need for a caching strategy that decides what
content to cache. Furthermore, many applications in the IoT space are
timesensitive; therefore, finding a caching strategy that minimises the latency
between content request and delivery is desirable. In this paper, we evaluate a
number of ICN caching strategies in regards to latency and hop count reduction
using IoT devices in a physical testbed. We find that the topology of the
network, and thus the routing algorithm used to generate forwarding
information, has a significant impact on the performance of a given caching
strategy. To the best of our knowledge, this is the first study that focuses on
latency effects in ICN-IoT caching while using real IoT hardware, and the first
to explicitly discuss the link between routing algorithm, network topology, and
caching effects.
History
Preferred citation
Pfender, J., Valera, A. & Seah, W. K. G. (2019). Content Delivery Latency of Caching Strategies for Information-Centric IoT. https://doi.org/10.48550/arxiv.1905.01011